Forecast of rainfall distribution based on fixed sliding window long short-term memory

Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of computational fluid mechanics 2022-12, Vol.16 (1), p.248-261
Hauptverfasser: Chen, Chengcheng, Zhang, Qian, Kashani, Mahsa H., Jun, Changhyun, Bateni, Sayed M., Band, Shahab S., Dash, Sonam Sandeep, Chau, Kwok-Wing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying data mining techniques for rainfall modeling because of a lack of sufficient memory components may increase uncertainty in rainfall forecasting. To solve this issue, in this research, a deep-learning-based long short-term memory (LSTM) model is developed for the first time for forecasting monthly rainfall data, and its capability is compared with a random forest (RF) data-driven model. To this end, monthly rainfall data for a period of 41 years (1980-2020) from two meteorological stations in Turkey, namely Rize and Konya, with different climatic conditions, are used. The analysis is carried out using optimum window sizes for determining the optimum lag times of rainfall time series. The performance of the models is evaluated using five statistical measures, namely root mean square error (RMSE), RMSE-observations standard deviation ratio (RSR), Legate and McCabe's index (LMI), correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE), and also using two visual means, namely Taylor and violin diagrams. The results reveal that the LSTM model, as a more efficient tool, outperforms the RF model in forecasting rainfall at both stations, with improved RMSE of 12.2-14.9%, RSR of 12.3-14.8%, R of 9.4-13.5% and NSE of 32.9-33.2%. The LSTM-based approach proposed herein could be adopted over any global climatic conditions to forecast the monthly rainfall with reasonable accuracy.
ISSN:1994-2060
1997-003X
DOI:10.1080/19942060.2021.2009374