Nesprin-2 mediated nuclear trafficking and its clinical implications
Nuclear translocation of proteins has a crucial role in the pathogenesis of cancer, Alzheimer disease and viral infections. A complete understanding of nuclear trafficking mechanisms is therefore necessary in order to establish effective intervention strategies. Here we elucidate the role of Nesprin...
Gespeichert in:
Veröffentlicht in: | Nucleus (Austin, Tex.) Tex.), 2015-01, Vol.6 (6), p.479-489 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear translocation of proteins has a crucial role in the pathogenesis of cancer, Alzheimer disease and viral infections. A complete understanding of nuclear trafficking mechanisms is therefore necessary in order to establish effective intervention strategies. Here we elucidate the role of Nesprin-2 in Ca
2+
/Calmodulin mediated nuclear transport. Nesprin-2 is an actin-binding nuclear envelope (NE) protein with roles in maintaining nuclear structure and location, regulation of transcription and mechanotransduction. Upon depletion of Nesprin-2 using shRNA, HaCaT cells show abnormal localization of the shuttling proteins BRCA1 and NF-κB. We show that their nuclear transport is unlikely due to the canonical RAN mediated nuclear import, but rather to a RAN independent Ca
2+
/Calmodulin driven mechanism involving Nesprin-2. We report novel interactions between the actin-binding domain of Nesprin-2 and Calmodulin and between the NLS containing region of BRCA1 and Calmodulin. Strikingly, displacing Nesprins from the NE resulted in increased steady state Ca
2+
concentrations in the cytoplasm suggesting a previously unidentified role of Nesprins in Ca
2+
regulation. On comparing Nesprin-2 and BRCA1 localization in the ovarian cancer cell lines SKOV-3 and Caov-3, Nesprin-2 and BRCA1 were localized to the NE envelope and the nucleus in SKOV-3, respectively, and to the cytoplasm in Caov-3 cells. Fibroblasts obtained from EDMD5 (Emery Dreifuss muscular dystrophy) patients showed loss of Nesprin-2 from the nuclear envelope, corresponding reduced nuclear localization of BRCA1 and enhanced cytoplasmic Ca
2+
. Taken together, the data suggests a novel role of Nesprin-2 in Ca
2+
/Calmodulin mediated nuclear trafficking and provides new insights which can guide future therapies. |
---|---|
ISSN: | 1949-1034 1949-1042 |
DOI: | 10.1080/19491034.2015.1128608 |