Application of PSA Methodology to Design Improvement of JAERI Passive Safety Reactor (JPSR)
A probabilistic safety assessment (PSA) technique was applied to the design of JAERI Passive Safety Reactor (JPSR). A PSA was performed to clarify safety features and identify vulnerabilities of the original design. Based on the PSA results and considering thermal-hydraulic analyses and experiments,...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear science and technology 1996-04, Vol.33 (4), p.316-326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A probabilistic safety assessment (PSA) technique was applied to the design of JAERI Passive Safety Reactor (JPSR). A PSA was performed to clarify safety features and identify vulnerabilities of the original design. Based on the PSA results and considering thermal-hydraulic analyses and experiments, the JPSR design was improved to enhance plant safety. The improved design was re-evaluated with the PSA. Initiating events selected in this study were: large-break LOCA, medium- and small-break LOCAs, SGTR, main steam line break, loss of offsite power, loss of feed water, and other transients. Fault tree analyses were used to evaluate the system unavailabilities. The total core damage frequency due to internal events was estimated to be less than 10
−7
/RY. The contribution of high frequency non-LOCA events could be significantly reduced by the design modification. The dominant initiating event was the small break LOCA and the dominant sequence was the failure of residual heat removal system. The present study indicated that the improved JPSR design has sufficient safety margin and the PSA methodology is very effective to improve reactor safety systems in a conceptual design phase. |
---|---|
ISSN: | 0022-3131 1881-1248 |
DOI: | 10.1080/18811248.1996.9731911 |