Three-dimensional virtual representation for the whole process of dam-break floods from a geospatial storytelling perspective

The objective of disaster scenes is to share location-based risk information to a large audience in an effective and intuitive way. However, current studies on three-dimensional (3D) representation for dam-break floods have the following limitations: (1) they are lacking a reasonable logic to organi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital earth 2022-12, Vol.15 (1), p.1637-1656
Hauptverfasser: Li, Weilian, Zhu, Jun, Haunert, Jan-Henrik, Fu, Lin, Zhu, Qing, Dehbi, Youness
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of disaster scenes is to share location-based risk information to a large audience in an effective and intuitive way. However, current studies on three-dimensional (3D) representation for dam-break floods have the following limitations: (1) they are lacking a reasonable logic to organize the whole process of dam-break floods, (2) they present information in a way that cannot be easily understood by laypersons. Geospatial storytelling helps to create exciting experiences and to explain complex relationships of geospatial phenomena. This article proposes a three-dimensional virtual representation method for the whole process of dam-break floods from a geospatial storytelling perspective. The creation of a storyline and a storytelling-oriented representation of dam-break floods are discussed in detail. Finally, a prototype system based on WebGL is developed to conduct an experiment analysis. The results of the experiment show that the proposed method can effectively support 3D representation of the spatiotemporal process of dam-break floods. Furthermore, the statistical results indicate that the storytelling is useful for assisting participants in understanding the occurrence and development of dam-break floods, and is applicable to the popularization of disaster science for the general public.
ISSN:1753-8947
1753-8955
DOI:10.1080/17538947.2022.2118877