Synthesis, conjugating capacity and biocompatibility evaluation of a novel amphiphilic polynorbornene

Polynorbornenes, prepared by the 'living' and 'controlled' ring-opening metathesis polymerization (ROMP) method, have emerged as a stimuli-sensitive new class of polymer carriers. Herein, we reported a novel amphiphilic diblock polynorbornene, PNCHO-b-PNTEG, containing active ben...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designed monomers and polymers 2020-01, Vol.23 (1), p.141-154
Hauptverfasser: He, Hengxi, Song, Bin, Qiu, Guirong, Wang, Weixiang, Gu, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polynorbornenes, prepared by the 'living' and 'controlled' ring-opening metathesis polymerization (ROMP) method, have emerged as a stimuli-sensitive new class of polymer carriers. Herein, we reported a novel amphiphilic diblock polynorbornene, PNCHO-b-PNTEG, containing active benzaldehyde units, which exhibited good conjugating capacity to amino-containing molecules (e.g., doxorubicin (DOX)) via the pH-sensitive Schiff base linkage. The copolymer and its conjugate with DOX, DOX-PNCHO-b-PNTEG, were adequately analyzed by various techniques including 1 H NMR, 13 C NMR, gel permeation chromatography, etc. Especially, the formed conjugate of DOX-PNCHO-b-PNTEG could self-assemble into near-spherical micelles with the diameter of 81 ± 10 nm, and exhibit acid-triggered DOX release behavior, and the release rate could be adjusted by changing the environmental pH value. The excellent biological safety of PNCHO-b-PNTEG was further demonstrated by the results from both in vitro toxicity evaluation to murine fibroblast cells (L-929 cells) and in vivo evaluation of acute developmental toxicity and cell death in zebrafish embryos. Hence, the present polynorbornene-based PNCHO-b-PNTEG possesses great potential application as a biocompatible polymeric carrier and could be employed to fabricate various pH-sensitive conjugates.
ISSN:1385-772X
1568-5551
1568-5551
DOI:10.1080/15685551.2020.1812832