Dimercaptosuccinic acid (succimer; DMSA) in inorganic lead poisoning

Introduction: This article reviews data on the efficacy of succimer (dimercaptosuccinic acid, DMSA) in the treatment of human inorganic lead poisoning, the adverse effects associated with its use, and summarizes current understanding of the pharmacokinetic and pharmacodynamic aspects. Methods. Medli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical toxicology (Philadelphia, Pa.) Pa.), 2009-08, Vol.47 (7), p.617-631
Hauptverfasser: Bradberry, Sally, Vale, Allister
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: This article reviews data on the efficacy of succimer (dimercaptosuccinic acid, DMSA) in the treatment of human inorganic lead poisoning, the adverse effects associated with its use, and summarizes current understanding of the pharmacokinetic and pharmacodynamic aspects. Methods. Medline, Toxline, and Embase were searched and 912 papers were identified and considered. Pharmacokinetics and pharmacodynamics. DMSA is absorbed rapidly but incompletely after oral administration, probably through an active transporter. There is evidence that enterohepatic circulation occurs. Most DMSA in plasma is protein (mainly albumin)-bound through a disulfide bond with cysteine; only a very small amount is present as free drug, which is filtered at the glomerulus then extensively reabsorbed into proximal tubule cells. Nonfiltered protein-bound DMSA in peritubular capillaries is also available for uptake into proximal tubule cells by active anion transport at the basolateral membrane. DMSA therefore accumulates in the kidney where it is extensively metabolized in humans to mixed disulfides of cysteine. Some 10-25% of an orally administered dose of DMSA is excreted in urine, the majority within 24 h and most (>90%) as DMSA-cysteine disulfide conjugates. It is not known whether protein-bound DMSA can chelate lead; there is evidence that the mixed disulfides of cysteine are the active chelating moiety in humans. If this is the case, this suggests that chelation occurs principally, if not exclusively, in the kidney. Dose. DMSA 30 mg kg day is more effective than either 10 or 20 mg kg day in enhancing urine lead excretion. Duration of therapy. Initial clinical studies with DMSA involved the administration of a 5-day course of treatment. Subsequently, a 19- to 26-day regimen was introduced with the intent of preventing or at least blunting a rebound in the blood lead concentration. Studies suggest, however, that repeated courses of DMSA 30 mg kg day for at least 5 days are equally efficacious if a treatment-free period of at least 1 week between courses is included to allow redistribution of lead from bone to soft tissues and blood. There is also evidence that in more severely poisoned patients DMSA 30 mg kg day can be given for more than 5 days with benefit. Efficacy. DMSA 30 mg kg day significantly increases urine lead elimination and significantly reduces blood lead concentrations in lead-poisoned patients, though there is substantial individual variation in respo
ISSN:1556-3650
1556-9519
DOI:10.1080/15563650903174828