Maintenance of Differentiated Function of the Surfactant System in Human Fetal Lung Type II Epithelial Cells Cultured on Plastic

We report a simplified culture system for human fetal lung type II cells that maintains surfactant expression. Type II cells isolated from explant cultures of hormone-treated lungs (18-22 wk gestation) by collagenase + trypsin digestion were cultured on plastic for 4 days in serum-free medium contai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fetal and pediatric pathology 2001-01, Vol.20 (5), p.387-412
Hauptverfasser: Gonzales, Linda W., Angampalli, Sree, Guttentag, Susan H., Beers, Mike F., Feinstein, Sheldon I., Matlapudi, Anjaneyulu, Ballard, Philip L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a simplified culture system for human fetal lung type II cells that maintains surfactant expression. Type II cells isolated from explant cultures of hormone-treated lungs (18-22 wk gestation) by collagenase + trypsin digestion were cultured on plastic for 4 days in serum-free medium containing dexamethasone (Dex, 10 nM) + 8-bromo-cAMP (0.1 mM) + isobutylmethylxanthine (0.1 mM) or were untreated (control). Surfactant protein (SP) mRNAs decreased markedly in control cells between days 1 and 4 of culture, but mRNA levels were high in treated cells on day 4 (SP-A, SP-B, SP-C, SP-D; 600%, 100%, 85%, 130% of day 0 content, respectively). Dex or cAMP alone increased SP-B, SP-C, and SP-D mRNAs and together had additive effects. The greatest increase in SP-A mRNA occurred with cAMP alone. Treated cells processed pro-SP-B and pro-SP-C proteins to mature forms and had a higher rate of phosphatidylcholine (PG) synthesis (2-fold) and higher saturation of PC (∼34% versus 27%) than controls. Only treated cells maintained secretagogue-responsive phospholipid synthesis. By electron microscopy, the treated cells retained lamellar bodies and extensive microvilli. We conclude that Dex and cAMP additively stimulate expression of surfactant components in isolated fetal type II cells, providing a simplified culture system for investigation of surfactant-related, and perhaps other, type II cell functions.
ISSN:1551-3815
1522-7952
1551-3823
DOI:10.1080/15513810109168622