Built-up area extraction using Landsat 8 OLI imagery

The normalized difference built-up index (NDBI) has been useful for mapping urban built-up areas using Landsat Thematic Mapper (TM) data. The applicability of this index to the newer Landsat-8 Operational Land Imager (OLI) data was examined during this study, and a new method for built-up area extra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GIScience and remote sensing 2014-07, Vol.51 (4), p.445-467
Hauptverfasser: Bhatti, Saad Saleem, Tripathi, Nitin Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The normalized difference built-up index (NDBI) has been useful for mapping urban built-up areas using Landsat Thematic Mapper (TM) data. The applicability of this index to the newer Landsat-8 Operational Land Imager (OLI) data was examined during this study, and a new method for built-up area extraction has been proposed. OLI imagery of urban areas of Lahore, Pakistan, was used to extract built-up areas through a modified NDBI approach and the proposed built-up area extraction method (BAEM). Instead of using individual bands, BAEM employed principal component analysis images of the highly correlated bands pertinent to NDBI computation. Through integration of temperature data, normalized difference vegetation index (NDVI) and modified normalized difference water index (MNDWI), BAEM was able to improve the overall accuracy of built-up area extraction by 11.84% compared to the modified NDBI approach. Rather than employing the binary NDBI, NDVI and MNDWI images, continuous images of these indices were used, and the final output was recoded by determining the threshold value through a double-window flexible pace search (DFPS) method. Results indicate that BAEM was more accurate at mapping urban built-up areas when applied to OLI imagery as compared to the modified NDBI approach; omission and commission errors were reduced by 75.96% and 33.36%, respectively. Moreover, the use of DFPS improved robustness of the proposed approach by enhancing user control over the segmentation of the output.
ISSN:1943-7226
1548-1603
1943-7226
DOI:10.1080/15481603.2014.939539