Forecasting with fractional Brownian motion: a financial perspective

The fractional Brownian motion (fBm) extends the standard Brownian motion by introducing some dependence between non-overlapping increments. Consequently, if one considers for example that log-prices follow an fBm, one can exploit the non-Markovian nature of the fBm to forecast future states of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2022-08, Vol.22 (8), p.1495-1512
1. Verfasser: Garcin, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fractional Brownian motion (fBm) extends the standard Brownian motion by introducing some dependence between non-overlapping increments. Consequently, if one considers for example that log-prices follow an fBm, one can exploit the non-Markovian nature of the fBm to forecast future states of the process and make statistical arbitrages. We provide new insights into forecasting an fBm, by proposing theoretical formulas for accuracy metrics relevant to a systematic trader, from the hit ratio to the expected gain and risk of a simple strategy. In addition, we answer some key questions about optimizing trading strategies in the fBm framework: Which lagged increments of the fBm, observed in discrete time, are to be considered? If the predicted increment is close to zero, up to which threshold is it more profitable not to invest? We also propose empirical applications on high-frequency FX rates, as well as on realized volatility series, exploring the rough volatility concept in a forecasting perspective.
ISSN:1469-7688
1469-7696
DOI:10.1080/14697688.2022.2071758