Admissible inertial manifolds for neutral equations and applications

We study the existence of admissible inertial manifolds for parabolic neutral functional differential equations of the form where the linear differential operator A is positive definite and self-adjoint with a discrete spectrum, the difference operator F is a bounded linear operator, and the delay n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2021-10, Vol.36 (4), p.608-630
Hauptverfasser: Vu, Thi Ngoc Ha, Nguyen, Thieu Huy, Le, Anh Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of admissible inertial manifolds for parabolic neutral functional differential equations of the form where the linear differential operator A is positive definite and self-adjoint with a discrete spectrum, the difference operator F is a bounded linear operator, and the delay nonlinear operator f is φ-Lipschitz for φ belonging to an admissible function space defined on . Our method is based on Lyapunov-Perron's equations, duality estimates in admissible spaces and F-induced trajectories. An application to heat transfer with delays in materials with memory is also given to illustrate our results.
ISSN:1468-9367
1468-9375
DOI:10.1080/14689367.2021.1971623