SOVAS: a scalable online visual analytic system for big climate data analysis
Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2020-06, Vol.34 (6), p.1188-1209 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1209 |
---|---|
container_issue | 6 |
container_start_page | 1188 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 34 |
creator | Li, Zhenlong Huang, Qunying Jiang, Yuqin Hu, Fei |
description | Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges. |
doi_str_mv | 10.1080/13658816.2019.1605073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2019_1605073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400035383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOY-ghDwuTNpmjb1yTH8B5M9TH0NN2kikaydSaf025vZ-erTPVx-53LuQeiSkjklglxTVnIhaDnPCa3ntCScVOwETdI-zxgR1emv5tkBOkezGJ0iORO1EBWfoOfN-m2xucGAowYPyhvctd61Bn-5uAePoQU_9E7jOMTebLHtAlbuHWvvttAb3EAPIxRdvEBnFnw0s-Ocotf7u5flY7ZaPzwtF6tMM8H7DApb0oIxolPAkglQwiZZ1HVjbKVyledWmYqDSpRuGLdVwWphjCV1A7VlU3Q13t2F7nNvYi8_un1IIaLMC0II40ywRPGR0qGLMRgrdyGFDoOkRB7Kk3_lyUN58lhe8t2OPtemb7fw3QXfyB4G3wUboNUuSvb_iR_0IXU9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400035383</pqid></control><display><type>article</type><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><source>Taylor & Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</creator><creatorcontrib>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</creatorcontrib><description>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2019.1605073</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>big spatiotemporal data ; Climate ; Climate studies ; Climatic data ; Data analysis ; Hadoop ; Internet ; Mathematical analysis ; Meteorological satellites ; On-line systems ; query analytics</subject><ispartof>International journal of geographical information science : IJGIS, 2020-06, Vol.34 (6), p.1188-1209</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</citedby><cites>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</cites><orcidid>0000-0003-0632-624X ; 0000-0002-8938-5466 ; 0000-0003-3499-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2019.1605073$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2019.1605073$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids></links><search><creatorcontrib>Li, Zhenlong</creatorcontrib><creatorcontrib>Huang, Qunying</creatorcontrib><creatorcontrib>Jiang, Yuqin</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><title>International journal of geographical information science : IJGIS</title><description>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</description><subject>big spatiotemporal data</subject><subject>Climate</subject><subject>Climate studies</subject><subject>Climatic data</subject><subject>Data analysis</subject><subject>Hadoop</subject><subject>Internet</subject><subject>Mathematical analysis</subject><subject>Meteorological satellites</subject><subject>On-line systems</subject><subject>query analytics</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOOY-ghDwuTNpmjb1yTH8B5M9TH0NN2kikaydSaf025vZ-erTPVx-53LuQeiSkjklglxTVnIhaDnPCa3ntCScVOwETdI-zxgR1emv5tkBOkezGJ0iORO1EBWfoOfN-m2xucGAowYPyhvctd61Bn-5uAePoQU_9E7jOMTebLHtAlbuHWvvttAb3EAPIxRdvEBnFnw0s-Ocotf7u5flY7ZaPzwtF6tMM8H7DApb0oIxolPAkglQwiZZ1HVjbKVyledWmYqDSpRuGLdVwWphjCV1A7VlU3Q13t2F7nNvYi8_un1IIaLMC0II40ywRPGR0qGLMRgrdyGFDoOkRB7Kk3_lyUN58lhe8t2OPtemb7fw3QXfyB4G3wUboNUuSvb_iR_0IXU9</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Li, Zhenlong</creator><creator>Huang, Qunying</creator><creator>Jiang, Yuqin</creator><creator>Hu, Fei</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0632-624X</orcidid><orcidid>https://orcid.org/0000-0002-8938-5466</orcidid><orcidid>https://orcid.org/0000-0003-3499-7294</orcidid></search><sort><creationdate>20200602</creationdate><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><author>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>big spatiotemporal data</topic><topic>Climate</topic><topic>Climate studies</topic><topic>Climatic data</topic><topic>Data analysis</topic><topic>Hadoop</topic><topic>Internet</topic><topic>Mathematical analysis</topic><topic>Meteorological satellites</topic><topic>On-line systems</topic><topic>query analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenlong</creatorcontrib><creatorcontrib>Huang, Qunying</creatorcontrib><creatorcontrib>Jiang, Yuqin</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenlong</au><au>Huang, Qunying</au><au>Jiang, Yuqin</au><au>Hu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOVAS: a scalable online visual analytic system for big climate data analysis</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2020-06-02</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>1188</spage><epage>1209</epage><pages>1188-1209</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2019.1605073</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0632-624X</orcidid><orcidid>https://orcid.org/0000-0002-8938-5466</orcidid><orcidid>https://orcid.org/0000-0003-3499-7294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2020-06, Vol.34 (6), p.1188-1209 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2019_1605073 |
source | Taylor & Francis Journals Complete; Alma/SFX Local Collection |
subjects | big spatiotemporal data Climate Climate studies Climatic data Data analysis Hadoop Internet Mathematical analysis Meteorological satellites On-line systems query analytics |
title | SOVAS: a scalable online visual analytic system for big climate data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOVAS:%20a%20scalable%20online%20visual%20analytic%20system%20for%20big%20climate%20data%20analysis&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Li,%20Zhenlong&rft.date=2020-06-02&rft.volume=34&rft.issue=6&rft.spage=1188&rft.epage=1209&rft.pages=1188-1209&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2019.1605073&rft_dat=%3Cproquest_cross%3E2400035383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400035383&rft_id=info:pmid/&rfr_iscdi=true |