SOVAS: a scalable online visual analytic system for big climate data analysis

Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2020-06, Vol.34 (6), p.1188-1209
Hauptverfasser: Li, Zhenlong, Huang, Qunying, Jiang, Yuqin, Hu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1209
container_issue 6
container_start_page 1188
container_title International journal of geographical information science : IJGIS
container_volume 34
creator Li, Zhenlong
Huang, Qunying
Jiang, Yuqin
Hu, Fei
description Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.
doi_str_mv 10.1080/13658816.2019.1605073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2019_1605073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400035383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOY-ghDwuTNpmjb1yTH8B5M9TH0NN2kikaydSaf025vZ-erTPVx-53LuQeiSkjklglxTVnIhaDnPCa3ntCScVOwETdI-zxgR1emv5tkBOkezGJ0iORO1EBWfoOfN-m2xucGAowYPyhvctd61Bn-5uAePoQU_9E7jOMTebLHtAlbuHWvvttAb3EAPIxRdvEBnFnw0s-Ocotf7u5flY7ZaPzwtF6tMM8H7DApb0oIxolPAkglQwiZZ1HVjbKVyledWmYqDSpRuGLdVwWphjCV1A7VlU3Q13t2F7nNvYi8_un1IIaLMC0II40ywRPGR0qGLMRgrdyGFDoOkRB7Kk3_lyUN58lhe8t2OPtemb7fw3QXfyB4G3wUboNUuSvb_iR_0IXU9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400035383</pqid></control><display><type>article</type><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><source>Taylor &amp; Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</creator><creatorcontrib>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</creatorcontrib><description>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2019.1605073</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>big spatiotemporal data ; Climate ; Climate studies ; Climatic data ; Data analysis ; Hadoop ; Internet ; Mathematical analysis ; Meteorological satellites ; On-line systems ; query analytics</subject><ispartof>International journal of geographical information science : IJGIS, 2020-06, Vol.34 (6), p.1188-1209</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</citedby><cites>FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</cites><orcidid>0000-0003-0632-624X ; 0000-0002-8938-5466 ; 0000-0003-3499-7294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2019.1605073$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2019.1605073$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids></links><search><creatorcontrib>Li, Zhenlong</creatorcontrib><creatorcontrib>Huang, Qunying</creatorcontrib><creatorcontrib>Jiang, Yuqin</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><title>International journal of geographical information science : IJGIS</title><description>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</description><subject>big spatiotemporal data</subject><subject>Climate</subject><subject>Climate studies</subject><subject>Climatic data</subject><subject>Data analysis</subject><subject>Hadoop</subject><subject>Internet</subject><subject>Mathematical analysis</subject><subject>Meteorological satellites</subject><subject>On-line systems</subject><subject>query analytics</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOOY-ghDwuTNpmjb1yTH8B5M9TH0NN2kikaydSaf025vZ-erTPVx-53LuQeiSkjklglxTVnIhaDnPCa3ntCScVOwETdI-zxgR1emv5tkBOkezGJ0iORO1EBWfoOfN-m2xucGAowYPyhvctd61Bn-5uAePoQU_9E7jOMTebLHtAlbuHWvvttAb3EAPIxRdvEBnFnw0s-Ocotf7u5flY7ZaPzwtF6tMM8H7DApb0oIxolPAkglQwiZZ1HVjbKVyledWmYqDSpRuGLdVwWphjCV1A7VlU3Q13t2F7nNvYi8_un1IIaLMC0II40ywRPGR0qGLMRgrdyGFDoOkRB7Kk3_lyUN58lhe8t2OPtemb7fw3QXfyB4G3wUboNUuSvb_iR_0IXU9</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Li, Zhenlong</creator><creator>Huang, Qunying</creator><creator>Jiang, Yuqin</creator><creator>Hu, Fei</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0632-624X</orcidid><orcidid>https://orcid.org/0000-0002-8938-5466</orcidid><orcidid>https://orcid.org/0000-0003-3499-7294</orcidid></search><sort><creationdate>20200602</creationdate><title>SOVAS: a scalable online visual analytic system for big climate data analysis</title><author>Li, Zhenlong ; Huang, Qunying ; Jiang, Yuqin ; Hu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a4f614330c308638ab8fc30499def7b2b22fbe75ab143cd35f74398eef09da9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>big spatiotemporal data</topic><topic>Climate</topic><topic>Climate studies</topic><topic>Climatic data</topic><topic>Data analysis</topic><topic>Hadoop</topic><topic>Internet</topic><topic>Mathematical analysis</topic><topic>Meteorological satellites</topic><topic>On-line systems</topic><topic>query analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenlong</creatorcontrib><creatorcontrib>Huang, Qunying</creatorcontrib><creatorcontrib>Jiang, Yuqin</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenlong</au><au>Huang, Qunying</au><au>Jiang, Yuqin</au><au>Hu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOVAS: a scalable online visual analytic system for big climate data analysis</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2020-06-02</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>1188</spage><epage>1209</epage><pages>1188-1209</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2019.1605073</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0632-624X</orcidid><orcidid>https://orcid.org/0000-0002-8938-5466</orcidid><orcidid>https://orcid.org/0000-0003-3499-7294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2020-06, Vol.34 (6), p.1188-1209
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_crossref_primary_10_1080_13658816_2019_1605073
source Taylor & Francis Journals Complete; Alma/SFX Local Collection
subjects big spatiotemporal data
Climate
Climate studies
Climatic data
Data analysis
Hadoop
Internet
Mathematical analysis
Meteorological satellites
On-line systems
query analytics
title SOVAS: a scalable online visual analytic system for big climate data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOVAS:%20a%20scalable%20online%20visual%20analytic%20system%20for%20big%20climate%20data%20analysis&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Li,%20Zhenlong&rft.date=2020-06-02&rft.volume=34&rft.issue=6&rft.spage=1188&rft.epage=1209&rft.pages=1188-1209&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2019.1605073&rft_dat=%3Cproquest_cross%3E2400035383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400035383&rft_id=info:pmid/&rfr_iscdi=true