SOVAS: a scalable online visual analytic system for big climate data analysis

Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2020-06, Vol.34 (6), p.1188-1209
Hauptverfasser: Li, Zhenlong, Huang, Qunying, Jiang, Yuqin, Hu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Big climate data offers great opportunities for scientific discovery but demands efficient and effective analytics to investigate unknown and complex patterns. Most existing online processing and analytics systems for climate studies only support fixed user interface with predefined functions. These systems are often not scalable to handle massive climate data that could easily accumulate terabytes daily. To address the major limitations of existing online systems for climate studies, this paper presents a scalable online visual analytic system, known as SOVAS, to balance both usability and flexibility. SOVAS, enabled by a set of key techniques, supports large-scale climate data analytics and knowledge discovery in a scalable and sharable environment. This research not only contributes to the community an efficient tool for analyzing big climate data but also contributes to the literature by providing valuable technical references for tackling spatiotemporal big data challenges.
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2019.1605073