Data-driven estimation of building interior plans
This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orien...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2017-08, Vol.31 (8), p.1652-1674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1674 |
---|---|
container_issue | 8 |
container_start_page | 1652 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 31 |
creator | Rosser, Julian F. Smith, Gavin Morley, Jeremy G. |
description | This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans.
The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology. |
doi_str_mv | 10.1080/13658816.2017.1313980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2017_1313980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902462657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWGp_grDg89ZMsrnsm1KvUPBFn0M2F4lsk5rsKv33bm199WmG4ZwzMx9Cl4CXgCW-BsqZlMCXBINYAgXaSnyCZtOc1BRLcfrbs3ovOkeLUkKHCZWtlILNENzpQdc2hy8XK1eGsNFDSLFKvurG0NsQ36sQB5dDytW217FcoDOv--IWxzpHbw_3r6unev3y-Ly6XdeGSjbUBqzmLQdqmbWWQWucllpQajwDKrHx2AjHpeVgSdNo0XRMi5Yyz0mHvaRzdHXI3eb0OU6nqY805jitVNBi0nDCmZhU7KAyOZWSnVfbPP2Qdwqw2gNSf4DUHpA6App8NwdfiD7ljf5Oubdq0Ls-ZZ91NKEo-n_EDzOVa48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902462657</pqid></control><display><type>article</type><title>Data-driven estimation of building interior plans</title><source>Taylor & Francis</source><source>Alma/SFX Local Collection</source><creator>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</creator><creatorcontrib>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</creatorcontrib><description>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans.
The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2017.1313980</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Building modelling ; Buildings ; Constraint modelling ; Construction planning ; Estimation ; Geographic information science ; indoor mapping ; optimisation ; prediction ; Prediction models ; Representations ; Topology</subject><ispartof>International journal of geographical information science : IJGIS, 2017-08, Vol.31 (8), p.1652-1674</ispartof><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2017</rights><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</citedby><cites>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2017.1313980$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2017.1313980$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids></links><search><creatorcontrib>Rosser, Julian F.</creatorcontrib><creatorcontrib>Smith, Gavin</creatorcontrib><creatorcontrib>Morley, Jeremy G.</creatorcontrib><title>Data-driven estimation of building interior plans</title><title>International journal of geographical information science : IJGIS</title><description>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans.
The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</description><subject>Building modelling</subject><subject>Buildings</subject><subject>Constraint modelling</subject><subject>Construction planning</subject><subject>Estimation</subject><subject>Geographic information science</subject><subject>indoor mapping</subject><subject>optimisation</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Representations</subject><subject>Topology</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kFtLAzEQhYMoWGp_grDg89ZMsrnsm1KvUPBFn0M2F4lsk5rsKv33bm199WmG4ZwzMx9Cl4CXgCW-BsqZlMCXBINYAgXaSnyCZtOc1BRLcfrbs3ovOkeLUkKHCZWtlILNENzpQdc2hy8XK1eGsNFDSLFKvurG0NsQ36sQB5dDytW217FcoDOv--IWxzpHbw_3r6unev3y-Ly6XdeGSjbUBqzmLQdqmbWWQWucllpQajwDKrHx2AjHpeVgSdNo0XRMi5Yyz0mHvaRzdHXI3eb0OU6nqY805jitVNBi0nDCmZhU7KAyOZWSnVfbPP2Qdwqw2gNSf4DUHpA6App8NwdfiD7ljf5Oubdq0Ls-ZZ91NKEo-n_EDzOVa48</recordid><startdate>20170803</startdate><enddate>20170803</enddate><creator>Rosser, Julian F.</creator><creator>Smith, Gavin</creator><creator>Morley, Jeremy G.</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170803</creationdate><title>Data-driven estimation of building interior plans</title><author>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Building modelling</topic><topic>Buildings</topic><topic>Constraint modelling</topic><topic>Construction planning</topic><topic>Estimation</topic><topic>Geographic information science</topic><topic>indoor mapping</topic><topic>optimisation</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Representations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosser, Julian F.</creatorcontrib><creatorcontrib>Smith, Gavin</creatorcontrib><creatorcontrib>Morley, Jeremy G.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosser, Julian F.</au><au>Smith, Gavin</au><au>Morley, Jeremy G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven estimation of building interior plans</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2017-08-03</date><risdate>2017</risdate><volume>31</volume><issue>8</issue><spage>1652</spage><epage>1674</epage><pages>1652-1674</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans.
The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2017.1313980</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2017-08, Vol.31 (8), p.1652-1674 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2017_1313980 |
source | Taylor & Francis; Alma/SFX Local Collection |
subjects | Building modelling Buildings Constraint modelling Construction planning Estimation Geographic information science indoor mapping optimisation prediction Prediction models Representations Topology |
title | Data-driven estimation of building interior plans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20estimation%20of%20building%20interior%20plans&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Rosser,%20Julian%20F.&rft.date=2017-08-03&rft.volume=31&rft.issue=8&rft.spage=1652&rft.epage=1674&rft.pages=1652-1674&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2017.1313980&rft_dat=%3Cproquest_cross%3E1902462657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902462657&rft_id=info:pmid/&rfr_iscdi=true |