Data-driven estimation of building interior plans

This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2017-08, Vol.31 (8), p.1652-1674
Hauptverfasser: Rosser, Julian F., Smith, Gavin, Morley, Jeremy G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1674
container_issue 8
container_start_page 1652
container_title International journal of geographical information science : IJGIS
container_volume 31
creator Rosser, Julian F.
Smith, Gavin
Morley, Jeremy G.
description This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.
doi_str_mv 10.1080/13658816.2017.1313980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2017_1313980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902462657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWGp_grDg89ZMsrnsm1KvUPBFn0M2F4lsk5rsKv33bm199WmG4ZwzMx9Cl4CXgCW-BsqZlMCXBINYAgXaSnyCZtOc1BRLcfrbs3ovOkeLUkKHCZWtlILNENzpQdc2hy8XK1eGsNFDSLFKvurG0NsQ36sQB5dDytW217FcoDOv--IWxzpHbw_3r6unev3y-Ly6XdeGSjbUBqzmLQdqmbWWQWucllpQajwDKrHx2AjHpeVgSdNo0XRMi5Yyz0mHvaRzdHXI3eb0OU6nqY805jitVNBi0nDCmZhU7KAyOZWSnVfbPP2Qdwqw2gNSf4DUHpA6App8NwdfiD7ljf5Oubdq0Ls-ZZ91NKEo-n_EDzOVa48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902462657</pqid></control><display><type>article</type><title>Data-driven estimation of building interior plans</title><source>Taylor &amp; Francis</source><source>Alma/SFX Local Collection</source><creator>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</creator><creatorcontrib>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</creatorcontrib><description>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2017.1313980</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Building modelling ; Buildings ; Constraint modelling ; Construction planning ; Estimation ; Geographic information science ; indoor mapping ; optimisation ; prediction ; Prediction models ; Representations ; Topology</subject><ispartof>International journal of geographical information science : IJGIS, 2017-08, Vol.31 (8), p.1652-1674</ispartof><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</citedby><cites>FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2017.1313980$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2017.1313980$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids></links><search><creatorcontrib>Rosser, Julian F.</creatorcontrib><creatorcontrib>Smith, Gavin</creatorcontrib><creatorcontrib>Morley, Jeremy G.</creatorcontrib><title>Data-driven estimation of building interior plans</title><title>International journal of geographical information science : IJGIS</title><description>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</description><subject>Building modelling</subject><subject>Buildings</subject><subject>Constraint modelling</subject><subject>Construction planning</subject><subject>Estimation</subject><subject>Geographic information science</subject><subject>indoor mapping</subject><subject>optimisation</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Representations</subject><subject>Topology</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kFtLAzEQhYMoWGp_grDg89ZMsrnsm1KvUPBFn0M2F4lsk5rsKv33bm199WmG4ZwzMx9Cl4CXgCW-BsqZlMCXBINYAgXaSnyCZtOc1BRLcfrbs3ovOkeLUkKHCZWtlILNENzpQdc2hy8XK1eGsNFDSLFKvurG0NsQ36sQB5dDytW217FcoDOv--IWxzpHbw_3r6unev3y-Ly6XdeGSjbUBqzmLQdqmbWWQWucllpQajwDKrHx2AjHpeVgSdNo0XRMi5Yyz0mHvaRzdHXI3eb0OU6nqY805jitVNBi0nDCmZhU7KAyOZWSnVfbPP2Qdwqw2gNSf4DUHpA6App8NwdfiD7ljf5Oubdq0Ls-ZZ91NKEo-n_EDzOVa48</recordid><startdate>20170803</startdate><enddate>20170803</enddate><creator>Rosser, Julian F.</creator><creator>Smith, Gavin</creator><creator>Morley, Jeremy G.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170803</creationdate><title>Data-driven estimation of building interior plans</title><author>Rosser, Julian F. ; Smith, Gavin ; Morley, Jeremy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c1da69613d5ddd519cea8a733cf51380cf0c7e68d61d244a74b5a7935f62b0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Building modelling</topic><topic>Buildings</topic><topic>Constraint modelling</topic><topic>Construction planning</topic><topic>Estimation</topic><topic>Geographic information science</topic><topic>indoor mapping</topic><topic>optimisation</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Representations</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosser, Julian F.</creatorcontrib><creatorcontrib>Smith, Gavin</creatorcontrib><creatorcontrib>Morley, Jeremy G.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosser, Julian F.</au><au>Smith, Gavin</au><au>Morley, Jeremy G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven estimation of building interior plans</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2017-08-03</date><risdate>2017</risdate><volume>31</volume><issue>8</issue><spage>1652</spage><epage>1674</epage><pages>1652-1674</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2017.1313980</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2017-08, Vol.31 (8), p.1652-1674
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_crossref_primary_10_1080_13658816_2017_1313980
source Taylor & Francis; Alma/SFX Local Collection
subjects Building modelling
Buildings
Constraint modelling
Construction planning
Estimation
Geographic information science
indoor mapping
optimisation
prediction
Prediction models
Representations
Topology
title Data-driven estimation of building interior plans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20estimation%20of%20building%20interior%20plans&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Rosser,%20Julian%20F.&rft.date=2017-08-03&rft.volume=31&rft.issue=8&rft.spage=1652&rft.epage=1674&rft.pages=1652-1674&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2017.1313980&rft_dat=%3Cproquest_cross%3E1902462657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902462657&rft_id=info:pmid/&rfr_iscdi=true