Data-driven estimation of building interior plans

This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2017-08, Vol.31 (8), p.1652-1674
Hauptverfasser: Rosser, Julian F., Smith, Gavin, Morley, Jeremy G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology.
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2017.1313980