Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data

The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attribu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of social research methodology 2023-05, Vol.26 (3), p.319-333
Hauptverfasser: Sperandei, Sandro, Bastos, Leonardo Soares, Ribeiro-Alves, Marcelo, Reis, Arianne, Bastos, Francisco Inácio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3
container_start_page 319
container_title International journal of social research methodology
container_volume 26
creator Sperandei, Sandro
Bastos, Leonardo Soares
Ribeiro-Alves, Marcelo
Reis, Arianne
Bastos, Francisco Inácio
description The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection process. RDS samples with different sizes were obtained. The observed coverage of three logistic regression estimators were applied to assess the association between the attributes and the infection status. In simulated datasets, unweighted logistic regression estimators emerged as the best option, although all estimators showed a fairly good performance. In the empirical dataset, the performance of weighted estimators presented an unexpected behavior, making them a risky option. The unweighted logistic regression estimator is a reliable option to be applied to RDS samples, with a performance roughly similar to random samples and, therefore, should be the preferred option.
doi_str_mv 10.1080/13645579.2022.2031153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13645579_2022_2031153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1387388</ericid><sourcerecordid>3076853031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-df879994175a8db6a0565f2fddc1a088bba8436cdc373c1234291e6c3020d82f3</originalsourceid><addsrcrecordid>eNp9UMlOwzAUtBBIlMInVLLEueAli8OJqiqbKnGBs-V6Ka6SONgOVT-A_8ZRCkcu9ntv3szYA8AMoxuMGLrFtMjyvKxuCCIkHRTjnJ6ACc6KbJ5ThE5TTYc6LZ2DixB2CBGMMZmA70UIOgTbbmHttjZEK6HXWz_MXAtF19VWKxhdmobOtUq3ca68_dItDKJJaGKG2Curwx0UMNimr0UcuMP0APc2fkBxVJIjktR001mf-hoqEcUlODOiDvrqeE_B-8Pqbfk0X78-Pi8X67nMUJl8DSurqspwmQumNoVAeZEbYpSSWCDGNhvBMlpIJWlJJSY0IxXWhaSIIMWIoVNwPep23n32OkS-c71vkyWnqCxYCovitJWPW9K7ELw2vPO2Ef7AMeJD4vw3cT4kzo-JJ95s5On0sz_O6gVTVlLGEn4_4rY1zjdi73yteBSH2nnjRSttesb_Fj-5q5PR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076853031</pqid></control><display><type>article</type><title>Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data</title><source>Business Source Complete</source><source>Sociological Abstracts</source><creator>Sperandei, Sandro ; Bastos, Leonardo Soares ; Ribeiro-Alves, Marcelo ; Reis, Arianne ; Bastos, Francisco Inácio</creator><creatorcontrib>Sperandei, Sandro ; Bastos, Leonardo Soares ; Ribeiro-Alves, Marcelo ; Reis, Arianne ; Bastos, Francisco Inácio</creatorcontrib><description>The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection process. RDS samples with different sizes were obtained. The observed coverage of three logistic regression estimators were applied to assess the association between the attributes and the infection status. In simulated datasets, unweighted logistic regression estimators emerged as the best option, although all estimators showed a fairly good performance. In the empirical dataset, the performance of weighted estimators presented an unexpected behavior, making them a risky option. The unweighted logistic regression estimator is a reliable option to be applied to RDS samples, with a performance roughly similar to random samples and, therefore, should be the preferred option.</description><identifier>ISSN: 1364-5579</identifier><identifier>EISSN: 1464-5300</identifier><identifier>DOI: 10.1080/13645579.2022.2031153</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Attributes ; Bayesian Statistics ; hard-to-reach populations ; Infections ; logistic regression ; Performance Based Assessment ; Recruitment ; Regression (Statistics) ; Respondent-driven sampling ; Sampling ; Scaling ; Simulation ; simulation studies ; statistical methods</subject><ispartof>International journal of social research methodology, 2023-05, Vol.26 (3), p.319-333</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-df879994175a8db6a0565f2fddc1a088bba8436cdc373c1234291e6c3020d82f3</citedby><cites>FETCH-LOGICAL-c407t-df879994175a8db6a0565f2fddc1a088bba8436cdc373c1234291e6c3020d82f3</cites><orcidid>0000-0001-5367-3397 ; 0000-0002-1406-0122 ; 0000-0002-1630-8857 ; 0000-0002-8663-3364 ; 0000-0001-5970-8896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,33751</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1387388$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Sperandei, Sandro</creatorcontrib><creatorcontrib>Bastos, Leonardo Soares</creatorcontrib><creatorcontrib>Ribeiro-Alves, Marcelo</creatorcontrib><creatorcontrib>Reis, Arianne</creatorcontrib><creatorcontrib>Bastos, Francisco Inácio</creatorcontrib><title>Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data</title><title>International journal of social research methodology</title><description>The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection process. RDS samples with different sizes were obtained. The observed coverage of three logistic regression estimators were applied to assess the association between the attributes and the infection status. In simulated datasets, unweighted logistic regression estimators emerged as the best option, although all estimators showed a fairly good performance. In the empirical dataset, the performance of weighted estimators presented an unexpected behavior, making them a risky option. The unweighted logistic regression estimator is a reliable option to be applied to RDS samples, with a performance roughly similar to random samples and, therefore, should be the preferred option.</description><subject>Attributes</subject><subject>Bayesian Statistics</subject><subject>hard-to-reach populations</subject><subject>Infections</subject><subject>logistic regression</subject><subject>Performance Based Assessment</subject><subject>Recruitment</subject><subject>Regression (Statistics)</subject><subject>Respondent-driven sampling</subject><subject>Sampling</subject><subject>Scaling</subject><subject>Simulation</subject><subject>simulation studies</subject><subject>statistical methods</subject><issn>1364-5579</issn><issn>1464-5300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9UMlOwzAUtBBIlMInVLLEueAli8OJqiqbKnGBs-V6Ka6SONgOVT-A_8ZRCkcu9ntv3szYA8AMoxuMGLrFtMjyvKxuCCIkHRTjnJ6ACc6KbJ5ThE5TTYc6LZ2DixB2CBGMMZmA70UIOgTbbmHttjZEK6HXWz_MXAtF19VWKxhdmobOtUq3ca68_dItDKJJaGKG2Curwx0UMNimr0UcuMP0APc2fkBxVJIjktR001mf-hoqEcUlODOiDvrqeE_B-8Pqbfk0X78-Pi8X67nMUJl8DSurqspwmQumNoVAeZEbYpSSWCDGNhvBMlpIJWlJJSY0IxXWhaSIIMWIoVNwPep23n32OkS-c71vkyWnqCxYCovitJWPW9K7ELw2vPO2Ef7AMeJD4vw3cT4kzo-JJ95s5On0sz_O6gVTVlLGEn4_4rY1zjdi73yteBSH2nnjRSttesb_Fj-5q5PR</recordid><startdate>20230504</startdate><enddate>20230504</enddate><creator>Sperandei, Sandro</creator><creator>Bastos, Leonardo Soares</creator><creator>Ribeiro-Alves, Marcelo</creator><creator>Reis, Arianne</creator><creator>Bastos, Francisco Inácio</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0001-5367-3397</orcidid><orcidid>https://orcid.org/0000-0002-1406-0122</orcidid><orcidid>https://orcid.org/0000-0002-1630-8857</orcidid><orcidid>https://orcid.org/0000-0002-8663-3364</orcidid><orcidid>https://orcid.org/0000-0001-5970-8896</orcidid></search><sort><creationdate>20230504</creationdate><title>Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data</title><author>Sperandei, Sandro ; Bastos, Leonardo Soares ; Ribeiro-Alves, Marcelo ; Reis, Arianne ; Bastos, Francisco Inácio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-df879994175a8db6a0565f2fddc1a088bba8436cdc373c1234291e6c3020d82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attributes</topic><topic>Bayesian Statistics</topic><topic>hard-to-reach populations</topic><topic>Infections</topic><topic>logistic regression</topic><topic>Performance Based Assessment</topic><topic>Recruitment</topic><topic>Regression (Statistics)</topic><topic>Respondent-driven sampling</topic><topic>Sampling</topic><topic>Scaling</topic><topic>Simulation</topic><topic>simulation studies</topic><topic>statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sperandei, Sandro</creatorcontrib><creatorcontrib>Bastos, Leonardo Soares</creatorcontrib><creatorcontrib>Ribeiro-Alves, Marcelo</creatorcontrib><creatorcontrib>Reis, Arianne</creatorcontrib><creatorcontrib>Bastos, Francisco Inácio</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>International journal of social research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sperandei, Sandro</au><au>Bastos, Leonardo Soares</au><au>Ribeiro-Alves, Marcelo</au><au>Reis, Arianne</au><au>Bastos, Francisco Inácio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1387388</ericid><atitle>Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data</atitle><jtitle>International journal of social research methodology</jtitle><date>2023-05-04</date><risdate>2023</risdate><volume>26</volume><issue>3</issue><spage>319</spage><epage>333</epage><pages>319-333</pages><issn>1364-5579</issn><eissn>1464-5300</eissn><abstract>The aim of this study is to investigate the impact of different logistic regression estimators applied to RDS studies via simulation and the analysis of empirical data. Four simulated populations were created with different connectivity characteristics. Each simulated individual received two attributes, one of them associated to the infection process. RDS samples with different sizes were obtained. The observed coverage of three logistic regression estimators were applied to assess the association between the attributes and the infection status. In simulated datasets, unweighted logistic regression estimators emerged as the best option, although all estimators showed a fairly good performance. In the empirical dataset, the performance of weighted estimators presented an unexpected behavior, making them a risky option. The unweighted logistic regression estimator is a reliable option to be applied to RDS samples, with a performance roughly similar to random samples and, therefore, should be the preferred option.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/13645579.2022.2031153</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5367-3397</orcidid><orcidid>https://orcid.org/0000-0002-1406-0122</orcidid><orcidid>https://orcid.org/0000-0002-1630-8857</orcidid><orcidid>https://orcid.org/0000-0002-8663-3364</orcidid><orcidid>https://orcid.org/0000-0001-5970-8896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5579
ispartof International journal of social research methodology, 2023-05, Vol.26 (3), p.319-333
issn 1364-5579
1464-5300
language eng
recordid cdi_crossref_primary_10_1080_13645579_2022_2031153
source Business Source Complete; Sociological Abstracts
subjects Attributes
Bayesian Statistics
hard-to-reach populations
Infections
logistic regression
Performance Based Assessment
Recruitment
Regression (Statistics)
Respondent-driven sampling
Sampling
Scaling
Simulation
simulation studies
statistical methods
title Assessing logistic regression applied to respondent-driven sampling studies: a simulation study with an application to empirical data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T14%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20logistic%20regression%20applied%20to%20respondent-driven%20sampling%20studies:%20a%20simulation%20study%20with%20an%20application%20to%20empirical%20data&rft.jtitle=International%20journal%20of%20social%20research%20methodology&rft.au=Sperandei,%20Sandro&rft.date=2023-05-04&rft.volume=26&rft.issue=3&rft.spage=319&rft.epage=333&rft.pages=319-333&rft.issn=1364-5579&rft.eissn=1464-5300&rft_id=info:doi/10.1080/13645579.2022.2031153&rft_dat=%3Cproquest_cross%3E3076853031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076853031&rft_id=info:pmid/&rft_ericid=EJ1387388&rfr_iscdi=true