Strengthening of wire arc additive manufactured aluminium alloy through interlayer rotary friction processing
To eliminate porosity and refine the grains in aluminium alloys fabricated via wire arc additive manufacturing (WAAM), a novel strengthening method – robotic rotary friction processing (RFP) – was introduced. The feasibility of RFP was assessed by processing the deposited beads under various average...
Gespeichert in:
Veröffentlicht in: | Science and technology of welding and joining 2023-12, Vol.28 (9), p.923-931 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To eliminate porosity and refine the grains in aluminium alloys fabricated via wire arc additive manufacturing (WAAM), a novel strengthening method – robotic rotary friction processing (RFP) – was introduced. The feasibility of RFP was assessed by processing the deposited beads under various average peak loads. During RFP, a rotating tool pressed the deposited beads to induce sufficient plastic deformation. After 3.5 kN-RFP, the WAAM densification ratio was improved to >99.5%, and pores were completely closed and eliminated owing to compression deformation and sub-grains bonding. The processed deposits exhibited effective grain refinement and high-density dislocation entanglement, which led to 22.8% and 34.2% improvements in the horizontal and vertical tensile strengths, respectively. Furthermore, the strengthening mechanism of RFP on deposited metals was clarified. |
---|---|
ISSN: | 1362-1718 1743-2936 |
DOI: | 10.1080/13621718.2023.2247271 |