Postlabelling HPLC analysis of lipophilic DNA adducts from human lung

A new modification of the 32P postlabelling method was described for the analysis of lipophilic DNA in human tissues. To isolate these DNA adducts the method applied nuclease P1 enrichment before labelling and butanol extraction after labelling, followed by high performance liquid chromatography HPL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomarkers 1997, Vol.2 (6), p.341-348
1. Verfasser: Kari Hemminki, Ke Yang, Heli Rajaniemi, Margarita Tyndyk Alexei Likhachev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new modification of the 32P postlabelling method was described for the analysis of lipophilic DNA in human tissues. To isolate these DNA adducts the method applied nuclease P1 enrichment before labelling and butanol extraction after labelling, followed by high performance liquid chromatography HPLC separation and flow through radioactivity detection. These enrichment methods are known to work for many adducts of polycyclic aromatic hydrocarbons PAHs. In human peripheral lung tissue fro m smokers the apparent level of the DNA adducts observed was 25-244 adducts per 108 nucelotides; in two alleged non smokers the level of adducts was 17 and 109 adducts per 108 nucleotides. When the same samples were analysed by thin layer chromatography TLC, as in the conventional postlabelling assay, the recovery was 5 of that of the HPLC method. Nevertheless, the results from the two methods correlated. In TLC the adducts were lost because they did not remain in the origin in D1 of the TLC development. There was no large difference in recovery between the two techniques for the PAH-DNA adduct standards used. The present results are underestimates of the true adduct levels because there is no way to correct for labelling efficiency and recovery of unknown adducts. Yet they give a lower estimate of the level of lipophilic DNA adducts in human lung tissue.
ISSN:1354-750X
1366-5804
DOI:10.1080/135475097231427