Bivariate option pricing with copulas

The adoption of copula functions is suggested in order to price bivariate contingent claims. Copulas enable the marginal distributions extracted from vertical spreads in the options markets to be imbedded in a multivariate pricing kernel. It is proved that such a kernel is a copula function, and tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical finance. 2002-06, Vol.9 (2), p.69-85
Hauptverfasser: Cherubini, U., Luciano, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adoption of copula functions is suggested in order to price bivariate contingent claims. Copulas enable the marginal distributions extracted from vertical spreads in the options markets to be imbedded in a multivariate pricing kernel. It is proved that such a kernel is a copula function, and that its super-replication strategy is represented by the Fréchet bounds. Applications provided include prices for binary digital options, options on the minimum and options to exchange one asset for another. For each of these products, no-arbitrage pricing bounds, as well as values consistent with the independence of the underlying assets are provided. As a final reference value, a copula function calibrated on historical data is used.
ISSN:1350-486X
1466-4313
DOI:10.1080/13504860210136721a