Combinational dual drug delivery system to enhance the care and treatment of gastric cancer patients

Gastric cancer is a frequently occurring cancer with high mortality each year worldwide. Finding new and effective therapeutic strategy against human gastric cancer is still urgently required. Hence, we have established a new method to achieve treatment-actuated modifications in a tumor microenviron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug delivery 2020-01, Vol.27 (1), p.1491-1500
Hauptverfasser: Xiao, Ying, Gao, Yuewen, Li, Fajuan, Deng, Zhihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gastric cancer is a frequently occurring cancer with high mortality each year worldwide. Finding new and effective therapeutic strategy against human gastric cancer is still urgently required. Hence, we have established a new method to achieve treatment-actuated modifications in a tumor microenvironment by utilizing synergistic activity between two potential anticancer drugs. Dual drug delivery of gemcitabine (GEM) and Camptothecin-11 (CPT-11) exhibits a great anti-cancer potential, as GEM enhances the effect of CPT-11 treatment of human gastric cells by providing microenvironment stability. However, encapsulation of GEM and CPT-11 obsessed by poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) is incompetent owing to unsuitability between the binary free GEM and CPT-11 moieties and the polymeric system. Now, we display that CPT-11 can be prepared by hydrophobic covering of the drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered CPT-11 can be co-encapsulated in PLGA NPs alongside GEM to stimulate excellent anticancer property. The occurrence of the CPT-11 suggestively enhanced the encapsulations of GEM into PLGA NPs (GEM-CPT-11 NPs). Formation of the nanocomposite (GEM-CPT-11 NPs) was confirmed by FTIR and X-ray spectroscopic techniques. Further, the morphology of GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs and NP size was examined by transmission electron microscopy (TEM), respectively. Furthermore, GEM-CPT-11 NPs induced significant apoptosis in human gastric NCI-N87 and SGC-791 cancer cells in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assays (AO-EB, nuclear staining, and annexin V-FITC). In addition, evaluation of the hemolysis assay with erythrocytes of human shows excellent biocompatibility of free GEM, free CPT-11, GEM NPs, CPT-11 NPs, and GEM-CPT-11 NPs. The results suggest that GEM-CPT-11 NPs are one of the promising nursing cares for human gastric cancer therapeutic candidates worthy of further investigations.
ISSN:1071-7544
1521-0464
DOI:10.1080/10717544.2020.1822460