Semiparametric Bayesian Regression via Potts Model

We consider Bayesian nonparametric regression through random partition models. Our approach involves the construction of a covariate-dependent prior distribution on partitions of individuals. Our goal is to use covariate information to improve predictive inference. To do so, we propose a prior on pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2017-04, Vol.26 (2), p.265-274
Hauptverfasser: Murua, Alejandro, Quintana, Fernando A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Bayesian nonparametric regression through random partition models. Our approach involves the construction of a covariate-dependent prior distribution on partitions of individuals. Our goal is to use covariate information to improve predictive inference. To do so, we propose a prior on partitions based on the Potts clustering model associated with the observed covariates. This drives by covariate proximity both the formation of clusters, and the prior predictive distribution. The resulting prior model is flexible enough to support many different types of likelihood models. We focus the discussion on nonparametric regression. Implementation details are discussed for the specific case of multivariate multiple linear regression. The proposed model performs well in terms of model fitting and prediction when compared to other alternative nonparametric regression approaches. We illustrate the methodology with an application to the health status of nations at the turn of the 21st century. Supplementary materials are available online.
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2016.1172015