The Functional Equation for L-Functions of Hyperelliptic Curves

We compute the L-functions of a large class of algebraic curves and verify the expected functional equation numerically. Our computations are based on our previous results on stable reduction to calculate the local L-factor and the conductor exponent at the primes of bad reduction. We mainly restric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mathematics 2017-10, Vol.26 (4), p.396-411
Hauptverfasser: Börner, Michel, Bouw, Irene I., Wewers, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the L-functions of a large class of algebraic curves and verify the expected functional equation numerically. Our computations are based on our previous results on stable reduction to calculate the local L-factor and the conductor exponent at the primes of bad reduction. We mainly restrict to the case of hyperelliptic curves of genus g ⩾ 2 defined over that have semistable reduction at every prime p. We also discuss a few more general cases to illustrate the usefulness of our method for general superelliptic curves.
ISSN:1058-6458
1944-950X
DOI:10.1080/10586458.2016.1189860