Discovering and Proving Infinite Binomial Sums Identities

We consider binomial and inverse binomial sums at infinity and rewrite them in terms of a small set of constants, such as powers of π or log (2). In order to perform these simplifications, we view the series as specializations of generating series. For these generating series, we derive integral rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mathematics 2017-01, Vol.26 (1), p.62-71
1. Verfasser: Ablinger, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider binomial and inverse binomial sums at infinity and rewrite them in terms of a small set of constants, such as powers of π or log (2). In order to perform these simplifications, we view the series as specializations of generating series. For these generating series, we derive integral representations in terms of root-valued iterated integrals. Using substitutions, we express the iterated integrals as cyclotomic harmonic polylogarithms. Finally, by applying known relations among the cyclotomic harmonic polylogarithms, we derive expressions in terms of several constants.
ISSN:1058-6458
1944-950X
DOI:10.1080/10586458.2015.1116028