Computing Class Polynomials for Abelian Surfaces

We describe a quasilinear algorithm for computing Igusa class polynomials of Jacobians of genus-2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mathematics 2014-04, Vol.23 (2), p.129-145
Hauptverfasser: Enge, Andreas, Thomé, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a quasilinear algorithm for computing Igusa class polynomials of Jacobians of genus-2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating ϑ-constants in quasilinear time using Newton iterations on the Borchardt mean. We report on experiments with our implementation and present an example with class number 20 016.
ISSN:1058-6458
1944-950X
DOI:10.1080/10586458.2013.878675