Computing Class Polynomials for Abelian Surfaces
We describe a quasilinear algorithm for computing Igusa class polynomials of Jacobians of genus-2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Du...
Gespeichert in:
Veröffentlicht in: | Experimental mathematics 2014-04, Vol.23 (2), p.129-145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a quasilinear algorithm for computing Igusa class polynomials of Jacobians of genus-2 curves via complex floating-point approximations of their roots. After providing an explicit treatment of the computations in quartic CM fields and their Galois closures, we pursue an approach due to Dupont for evaluating ϑ-constants in quasilinear time using Newton iterations on the Borchardt mean. We report on experiments with our implementation and present an example with class number 20 016. |
---|---|
ISSN: | 1058-6458 1944-950X |
DOI: | 10.1080/10586458.2013.878675 |