UHV processing of ferroelectric barium magnesium fluoride films and devices

Barium magnesium fluoride (BaMgF4) has recently emerged as a strong candidate for application as the gate dielectric in ferroelectric random access memory (FERRAM) devices with nondestructive readout (NDRO). In earlier papers we reported the successful growth of oriented BaMgF4 films on Si(100) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrated ferroelectrics 1992-11, Vol.2 (1-4), p.377-386
Hauptverfasser: Sinharoy, S., Lampe, D. R., Buhay, H., Francombe, M. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Barium magnesium fluoride (BaMgF4) has recently emerged as a strong candidate for application as the gate dielectric in ferroelectric random access memory (FERRAM) devices with nondestructive readout (NDRO). In earlier papers we reported the successful growth of oriented BaMgF4 films on Si(100) and other substrates in a ultrahigh vacuum (UHV) system, as well as the results of the structural and electrical characterization of these ferroelectric films. In the present paper, we review some of the earlier results, and also examine the effect of variations in the growth temperature and various post-growth anneals on the stoichiometry, crystallinity, orientation, and electrical characteristics of the BaMgF4 films. Initial attempts at integrating the ferroelectric field-effect transistor (FEMFET) with the standard CMOS VLSIC processing, as well as the effect of adding a thin capping layer of SiO2 on the BaMgF4 will also be described.
ISSN:1058-4587
1607-8489
DOI:10.1080/10584589208215757