Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations

This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization methods & software 1998-01, Vol.8 (3-4), p.201-223
Hauptverfasser: Luksan, L, Vlcek, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 3-4
container_start_page 201
container_title Optimization methods & software
container_volume 8
creator Luksan, L
Vlcek, J
description This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based cfn the preconditioned smoothed CGS method for solving nonsymmetric systems of linejtr equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of tip proposed algorithm
doi_str_mv 10.1080/10556789808805677
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10556789808805677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27453660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-efe299d85dae35a0732739e6e9c738eaf9c1f48341ea6563898dd1795815477a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhSMEEqXwA9g8sQXsOo5tiQVVvKRKLDBHl-SmDXLs1HYo_fe4lK1CTOdI93z3lWWXjF4zqugNo0KUUmlFlaLJyaNswuhM54Xm8njnhchTQJ1mZyF8UEoLVpSTbD13_TBGiJ2zYAh-Deg7tDWSTRdXZGncOxizJbWzn-iXaCNpMNQ77TGuXBNI6zwxkGokDOBDkm2I2AfiWmKdNZ1F8ATX48-QcJ6dtGACXvzqNHt7uH-dP-WLl8fn-d0irwumYo4tzrRulGgAuQAq-UxyjSXqWnKF0OqatYXiBUMoRcnT6U3DpBaKiUJK4NPsat938G49YohV36XFjQGLbgzVTBaClyVNQbYP1t6F4LGtBt_14LcVo9XuudXBcxMj90xn0_k9bJw3TRVha5xvPdi6C4dUFb9iIm__Jfnfg78BjfuU1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27453660</pqid></control><display><type>article</type><title>Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations</title><source>Taylor &amp; Francis Journals Complete</source><creator>Luksan, L ; Vlcek, J</creator><creatorcontrib>Luksan, L ; Vlcek, J</creatorcontrib><description>This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based cfn the preconditioned smoothed CGS method for solving nonsymmetric systems of linejtr equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of tip proposed algorithm</description><identifier>ISSN: 1055-6788</identifier><identifier>EISSN: 1029-4937</identifier><identifier>DOI: 10.1080/10556789808805677</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Armijo-Type Descent Methods ; Computational Experiments ; Conjugate Gradient Type Methods ; Global Convergence ; Newton-Like Methods Inexact Methods ; Nonlinear Equations ; Nonsymmetric Linear Systems ; Residual Smoothing</subject><ispartof>Optimization methods &amp; software, 1998-01, Vol.8 (3-4), p.201-223</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-efe299d85dae35a0732739e6e9c738eaf9c1f48341ea6563898dd1795815477a3</citedby><cites>FETCH-LOGICAL-c418t-efe299d85dae35a0732739e6e9c738eaf9c1f48341ea6563898dd1795815477a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10556789808805677$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10556789808805677$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Luksan, L</creatorcontrib><creatorcontrib>Vlcek, J</creatorcontrib><title>Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations</title><title>Optimization methods &amp; software</title><description>This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based cfn the preconditioned smoothed CGS method for solving nonsymmetric systems of linejtr equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of tip proposed algorithm</description><subject>Armijo-Type Descent Methods</subject><subject>Computational Experiments</subject><subject>Conjugate Gradient Type Methods</subject><subject>Global Convergence</subject><subject>Newton-Like Methods Inexact Methods</subject><subject>Nonlinear Equations</subject><subject>Nonsymmetric Linear Systems</subject><subject>Residual Smoothing</subject><issn>1055-6788</issn><issn>1029-4937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhSMEEqXwA9g8sQXsOo5tiQVVvKRKLDBHl-SmDXLs1HYo_fe4lK1CTOdI93z3lWWXjF4zqugNo0KUUmlFlaLJyaNswuhM54Xm8njnhchTQJ1mZyF8UEoLVpSTbD13_TBGiJ2zYAh-Deg7tDWSTRdXZGncOxizJbWzn-iXaCNpMNQ77TGuXBNI6zwxkGokDOBDkm2I2AfiWmKdNZ1F8ATX48-QcJ6dtGACXvzqNHt7uH-dP-WLl8fn-d0irwumYo4tzrRulGgAuQAq-UxyjSXqWnKF0OqatYXiBUMoRcnT6U3DpBaKiUJK4NPsat938G49YohV36XFjQGLbgzVTBaClyVNQbYP1t6F4LGtBt_14LcVo9XuudXBcxMj90xn0_k9bJw3TRVha5xvPdi6C4dUFb9iIm__Jfnfg78BjfuU1w</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Luksan, L</creator><creator>Vlcek, J</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980101</creationdate><title>Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations</title><author>Luksan, L ; Vlcek, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-efe299d85dae35a0732739e6e9c738eaf9c1f48341ea6563898dd1795815477a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Armijo-Type Descent Methods</topic><topic>Computational Experiments</topic><topic>Conjugate Gradient Type Methods</topic><topic>Global Convergence</topic><topic>Newton-Like Methods Inexact Methods</topic><topic>Nonlinear Equations</topic><topic>Nonsymmetric Linear Systems</topic><topic>Residual Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luksan, L</creatorcontrib><creatorcontrib>Vlcek, J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Optimization methods &amp; software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luksan, L</au><au>Vlcek, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations</atitle><jtitle>Optimization methods &amp; software</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>8</volume><issue>3-4</issue><spage>201</spage><epage>223</epage><pages>201-223</pages><issn>1055-6788</issn><eissn>1029-4937</eissn><abstract>This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based cfn the preconditioned smoothed CGS method for solving nonsymmetric systems of linejtr equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of tip proposed algorithm</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10556789808805677</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1055-6788
ispartof Optimization methods & software, 1998-01, Vol.8 (3-4), p.201-223
issn 1055-6788
1029-4937
language eng
recordid cdi_crossref_primary_10_1080_10556789808805677
source Taylor & Francis Journals Complete
subjects Armijo-Type Descent Methods
Computational Experiments
Conjugate Gradient Type Methods
Global Convergence
Newton-Like Methods Inexact Methods
Nonlinear Equations
Nonsymmetric Linear Systems
Residual Smoothing
title Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20experience%20with%20globally%20convergent%20descent%20methods%20for%20large%20sparse%20systems%20of%20nonlinear%20equations&rft.jtitle=Optimization%20methods%20&%20software&rft.au=Luksan,%20L&rft.date=1998-01-01&rft.volume=8&rft.issue=3-4&rft.spage=201&rft.epage=223&rft.pages=201-223&rft.issn=1055-6788&rft.eissn=1029-4937&rft_id=info:doi/10.1080/10556789808805677&rft_dat=%3Cproquest_cross%3E27453660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27453660&rft_id=info:pmid/&rfr_iscdi=true