Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations
This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general th...
Gespeichert in:
Veröffentlicht in: | Optimization methods & software 1998-01, Vol.8 (3-4), p.201-223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to globally convergent Armijo-type descent methods for solving large sparse systems of nonlinear equations. These methods include the discrete Newtcin method and a broad class of Newton-like methods based on various approximations of the Jacobian matrix. We propose a general theory of global convergence together with a robust algorithm including a special restarting strategy. This algorithm is based cfn the preconditioned smoothed CGS method for solving nonsymmetric systems of linejtr equations. After reviewing 12 particular Newton-like methods, we propose results of extensive computational experiments. These results demonstrate high efficiency of tip proposed algorithm |
---|---|
ISSN: | 1055-6788 1029-4937 |
DOI: | 10.1080/10556789808805677 |