NONLINEAR GEOMETRICALLY ADAPTIVE FINITE ELEMENT MODEL OF THE COILBOX

A mathematical model, as well as the corresponding numerical solution, is presented for the evolution of temperature in a coiling and uncoiling bar in hot mills in the form of a parabolic partial differential equation for a shape-changing domain. The space discretization is achieved via a computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical Heat Transfer. Part A, Applications Applications, 1996-12, Vol.30 (8), p.849-858
1. Verfasser: Troyani, Nando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mathematical model, as well as the corresponding numerical solution, is presented for the evolution of temperature in a coiling and uncoiling bar in hot mills in the form of a parabolic partial differential equation for a shape-changing domain. The space discretization is achieved via a computationally efficient geometrically adaptive finite element scheme that accommodates the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Finally, some numerical results are presented.
ISSN:1040-7782
1521-0634
DOI:10.1080/10407789608913874