A Comparative Study of Estimation Methods for Parameters in Multiple Linear Regression Model

Cankaya, S., Kayaalp, G.T., Sangun, L., Tahtali, Y. and Akar, M. 2006. A comparative study of estimation methods for parameters in multiple linear regression model. J. Appl. Anim. Res., 29: 43-47. This paper investigated least squares method, non-parametric method and robust regression methods to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Animal Research 2006-03, Vol.29 (1), p.43-47
Hauptverfasser: Cankaya, Soner, Kayaalp, G. Tamer, Sangun, Levent, Tahtali, Yalcin, Akar, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cankaya, S., Kayaalp, G.T., Sangun, L., Tahtali, Y. and Akar, M. 2006. A comparative study of estimation methods for parameters in multiple linear regression model. J. Appl. Anim. Res., 29: 43-47. This paper investigated least squares method, non-parametric method and robust regression methods to predict the parameters of multiple regression models. To evaluate these methods, measurements of body weight, total length and fork length of fishes collected from Serranus cabrilla were used. In these regression models, body weight was dependent variable whereas total length and fork length were independent variables. The results show that non-parametric regression method, general additive model, has minimum R2 value and least median squares has maximum R 2 value, 0.334 and 0.855, respectively.
ISSN:0971-2119
0974-1844
DOI:10.1080/09712119.2006.9706568