Dose-response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions

Purpose : To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. Material and methods : Exponentially growing human fibroblast cells AG1522 were irradiated with γ-rays, energetic carbon (13 keV/ μ m, 80keV/ μ m), silicon (55...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation biology 2001, Vol.77 (2), p.165-174
1. Verfasser: Kawata, M. Durante, Y. Furusawa, K. George, N. Takai, H. Wu, F. A. Cucinotta, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose : To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. Material and methods : Exponentially growing human fibroblast cells AG1522 were irradiated with γ-rays, energetic carbon (13 keV/ μ m, 80keV/ μ m), silicon (55 keV/ μ m) and iron (140 keV/ μ m, 185keV/ μ m, 440keV/ μ m) ions. Chromosomes were prematurely condensed using calyculin-A. Initial chromatid-type and isochromatid breaks in G2 cells were scored. Results : The dose-response curves for total chromatid breaks were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET-dependent increase, peaking around 2.7 at 55-80 keV/ μ m and decreasing at higher LET. The dose-response curves for isochromatid-type breaks were linear for high-LET radiations, but linear-quadratic for γ-rays and 13 keV/ μ m carbon ions. The RBE for the induction of isochromatid breaks obtained from linear components increased rapidly between 13 keV/ μ m (about 7) and 80 keV/ μ m carbon (about 71), and decreased gradually until 440keV/ μ m iron ions (about 66). Conclusions : High-LET radiations are more effective at inducing isochromatid breaks, while low-LET radiations are more effective at inducing chromatid-type breaks. The densely ionizing track structures of heavy ions and the proximity of sister chromatids in G2 cells result in an increase in isochromatid breaks.
ISSN:0955-3002
1362-3095
DOI:10.1080/09553000010007686