S_I_LSTM: stock price prediction based on multiple data sources and sentiment analysis

Stocks price prediction is a current hot spot with great promise and challenges. Recently, there have been many stock price prediction methods. However, the prediction accuracy of these methods is still far from satisfactory. In this paper, we propose a stock price prediction method that incorporate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Connection science 2022-12, Vol.34 (1), p.44-62
Hauptverfasser: Wu, Shengting, Liu, Yuling, Zou, Ziran, Weng, Tien-Hsiung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stocks price prediction is a current hot spot with great promise and challenges. Recently, there have been many stock price prediction methods. However, the prediction accuracy of these methods is still far from satisfactory. In this paper, we propose a stock price prediction method that incorporates multiple data sources and the investor sentiment, which can be called S_I_LSTM. Firstly, we crawl multiple data sources on the Internet and preprocess them respectively. These data involve stock historical data, technical indicators, and non-traditional data sources, such as stock posts and financial news. Then, we use the sentiment analysis method based on convolutional neural network for the non-traditional data, which can calculate the investors' sentiment index. Finally, we combine sentiment index, technical indicators and stock historical transaction data as the feature set of stock price prediction and adopt the long short-term memory network for predicting the China Shanghai A-share market. The experiments show that the predicted stock closing price is closer to the true closing price than the single data source, and the mean absolute error can achieve 2.386835, which is better than traditional methods. We verified the effectiveness on the real data sets of five listed companies.
ISSN:0954-0091
1360-0494
DOI:10.1080/09540091.2021.1940101