A new fuzzy C-means method for magnetic resonance image brain segmentation

In this paper, we introduce a new fuzzy c-means (FCM) method in order to improve the magnetic resonance images' (MRIs) segmentation. The proposed method combines the FCM and possiblistic c-means (PCM) functions using a weighted Gaussian function. The weighted Gaussian function is given to indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Connection science 2015-10, Vol.27 (4), p.305-321
Hauptverfasser: Altameem, Torki, Zanaty, E.A., Tolba, Amr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new fuzzy c-means (FCM) method in order to improve the magnetic resonance images' (MRIs) segmentation. The proposed method combines the FCM and possiblistic c-means (PCM) functions using a weighted Gaussian function. The weighted Gaussian function is given to indicate the spatial influence of the neighbouring pixels on the central pixel. The parameters of weighting coefficients are automatically determined in the implementation using the Gaussian function for every pixel in the image. The proposed method is realised by modifying the objective function of the PCM algorithm to produce memberships and possibilities simultaneously, along with the usual point prototypes or cluster centres for each cluster. The membership values can be interpreted as degrees of possibility of the points belonging to the classes, that is, the compatibilities of the points with the class prototypes to overcome the coincident clusters problem of PCM. The efficiency of the proposed algorithm is demonstrated by extensive segmentation experiments using MRIs and comparison with other state-of-the-art algorithms. In the proposed method, the effect of noise is controlled by incorporating the possibility (typicality) function in addition to the membership function. Consideration of these constraints can greatly control the noise in the image as shown in our experiments.
ISSN:0954-0091
1360-0494
DOI:10.1080/09540091.2014.970126