Data-driven software reliability evaluation under incomplete knowledge on fault count distribution

In this article, we consider data-driven approaches for software reliability evaluation without specifying the fault count distribution, where the underlying stochastic process to describe software fault-counts in the system testing is given by a non-homogeneous Poisson process. A comprehensive non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality engineering 2020-07, Vol.32 (3), p.421-433
Hauptverfasser: Dohi, Tadashi, Zheng, Junjun, Okamura, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we consider data-driven approaches for software reliability evaluation without specifying the fault count distribution, where the underlying stochastic process to describe software fault-counts in the system testing is given by a non-homogeneous Poisson process. A comprehensive non-parametric method based on the kernel estimation is provided with several kernel functions and bandwidth estimations, in addition to the non-parametric bootstrap. The resulting data-driven methodologies can give useful probabilistic information on the software reliability prediction under the incomplete knowledge on fault count distribution.
ISSN:0898-2112
1532-4222
DOI:10.1080/08982112.2020.1757705