Data-driven software reliability evaluation under incomplete knowledge on fault count distribution
In this article, we consider data-driven approaches for software reliability evaluation without specifying the fault count distribution, where the underlying stochastic process to describe software fault-counts in the system testing is given by a non-homogeneous Poisson process. A comprehensive non-...
Gespeichert in:
Veröffentlicht in: | Quality engineering 2020-07, Vol.32 (3), p.421-433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider data-driven approaches for software reliability evaluation without specifying the fault count distribution, where the underlying stochastic process to describe software fault-counts in the system testing is given by a non-homogeneous Poisson process. A comprehensive non-parametric method based on the kernel estimation is provided with several kernel functions and bandwidth estimations, in addition to the non-parametric bootstrap. The resulting data-driven methodologies can give useful probabilistic information on the software reliability prediction under the incomplete knowledge on fault count distribution. |
---|---|
ISSN: | 0898-2112 1532-4222 |
DOI: | 10.1080/08982112.2020.1757705 |