A state-space approach to time-varying reduced-rank regression

We propose a new approach to reduced-rank regression that allows for time-variation in the regression coefficients. The Kalman filter based estimation allows for usage of standard methods and easy implementation of our procedure. The EM-algorithm ensures convergence to a local maximum of the likelih...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2022-09, Vol.41 (8), p.895-917
Hauptverfasser: Brune, Barbara, Scherrer, Wolfgang, Bura, Efstathia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new approach to reduced-rank regression that allows for time-variation in the regression coefficients. The Kalman filter based estimation allows for usage of standard methods and easy implementation of our procedure. The EM-algorithm ensures convergence to a local maximum of the likelihood. Our estimation approach in time-varying reduced-rank regression performs well in simulations, with amplified competitive advantage in time series that experience large structural changes. We illustrate the performance of our approach with a simulation study and two applications to stock index and Covid-19 case data.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474938.2022.2073743