Smoothed maximum score estimation with nonparametrically generated covariates

This paper develops a two-stage semiparametric procedure to estimate the preference parameters of a binary choice model under uncertainty. In the model, the agent's decision rule is affected by the conditional expectation. We nonparametrically estimate the conditional expectation in the first s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2021-09, Vol.40 (8), p.796-813
Hauptverfasser: Cao, Xiaoyong, Chen, Xirong, Gao, Wenzheng, Hsiao, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a two-stage semiparametric procedure to estimate the preference parameters of a binary choice model under uncertainty. In the model, the agent's decision rule is affected by the conditional expectation. We nonparametrically estimate the conditional expectation in the first stage. Then, in the second stage, the preference parameters are estimated by the smoothed maximum score method. We establish the consistency and asymptotic distribution of the two-stage estimator. Furthermore, we also characterize the conditions under which the first-stage nonparametric estimation will not affect the asymptotic distribution of the smoothed maximum score estimator. Monte Carlo simulation results demonstrate that our proposed estimator performs well in finite samples.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474938.2021.1889205