Discovery of Technological Innovation Systems: Implications for Predicting Future Innovation

In contrast with the accelerating trend of boundary-spanning (horizontal) technological innovation, the current Cooperative Patent Classification (CPC) scheme applies a hierarchical (vertical) structure to innovation output in terms of patents. For this reason, we argue that the CPC can be complemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of management information systems 2024-01, Vol.41 (1), p.39-72
Hauptverfasser: Yoon, Junho, Pant, Gautam, Pant, Shagun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In contrast with the accelerating trend of boundary-spanning (horizontal) technological innovation, the current Cooperative Patent Classification (CPC) scheme applies a hierarchical (vertical) structure to innovation output in terms of patents. For this reason, we argue that the CPC can be complemented with dynamic technological innovation system (TIS) discovery through machine learning that accounts for horizontal relationships across seemingly disparate technologies. Using a design science approach, we propose a framework to discover boundary-spanning TISs by leveraging the textual information from millions of patents. We validate our framework in terms of the ability of discovered relationships to predict future innovation quantity and quality in different technology classes. Our novel TIS-based innovation metrics that leverage patenting activity in related technology classes are significantly associated with future innovation intensity in focal technologies. We conduct experiments with machine learning models to further tease out the predictive utility of our TIS discovery framework.
ISSN:0742-1222
1557-928X
DOI:10.1080/07421222.2023.2301172