TWO-STAGE MOISTURE DIFFUSION IN WOOD WITH CONSTANT TRANSPORT COEFFICIENTS

To determine whether transport coefficients in desorption curves for northern red oak are constant, four sets of desorption data were compared against previously established mathematical conditions for infinite-series solution of the non-steady-state diffusion equation. For each data set, when moist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drying Technology 1999-01, Vol.17 (1-2), p.258-267
Hauptverfasser: Liu, Jen Y., Simpson, William T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine whether transport coefficients in desorption curves for northern red oak are constant, four sets of desorption data were compared against previously established mathematical conditions for infinite-series solution of the non-steady-state diffusion equation. For each data set, when moisture fraction in wood is above a certain value, designated as the first stage, these conditions are satisfied, with the diffusion and surface emission coefficients being positive and finite; below that value, designated as the second stage, these conditions are still satisfied, with the diffusion coefficient taking a smaller positive value but the surface emission coefficient becoming negative and finite. Mathematically, these two pairs of transport coefficients can be used to predict the whole diffusion curve that describes the variation of moisture fraction with time. However, the negative surface emission coefficient in the second stage of the desorption process implies that the moisture gradient has cut the surface at a point below the equilibrium moisture content, which is physically impossible. Alternatively, the second stage can be considered as a new stage with moisture fraction values normalized with respect to the lowest value in the first stage, which is also the starting point of the second stage. The transport coefficents are obtained in the same manner as in the first stage and are found to be positive and finite. The two pairs of transport coefficients can describe the diffusion curve with high accuracy. However, the assumption used in the second stage is that the initial moisture content in wood is uniform, which again is physically impossible. We therefore conclude that the transport coefficients for northern red oak are not constant. Although the two-stage approaches presented in this study can predict the diffusion curves accurately, their physical interaction is difficult to justify.
ISSN:0737-3937
1532-2300
DOI:10.1080/07373939908917528