Parametric and nonparametric estimation of P(Y < X) for finite mixtures of lognormal components

In this paper, parametric and nonparametric estimators of the stressstrength reliability are obtained and compared when the random variables X and Y are independent and each of which is a mixture of lognormal components. 100(1 - α)% confidence bounds are obtained and compared in both of the parametr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1997-01, Vol.26 (5), p.1269-1289
Hauptverfasser: AL-Hussaini, Essam K., Mousa, Mohamad A. M. A., Sultan, Khalaf S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, parametric and nonparametric estimators of the stressstrength reliability are obtained and compared when the random variables X and Y are independent and each of which is a mixture of lognormal components. 100(1 - α)% confidence bounds are obtained and compared in both of the parametric and nonparametric cases. Sin~ulation shows that the parametric point estimates are better than the nonparametric point estimates for all sample sizes. This is also true for interval estimates. particularly when the sample size N is small. As N increases: no great loss in precision occurs if Goviildarajulu's bounds arc used rather than the parametric bounds. The nonparanietric bounds are simpler and faster to obtain.
ISSN:0361-0926
1532-415X
DOI:10.1080/03610929708831981