Inequalities for tail probabilities for the multivariate normal distribution
Inequalities for tail probabilities of the multivariate normal distribution are obtained, as a generalization of those given by Feller (1966). Upper and lower bounds are given in the equi-correlated case. For an arbitrary correlation matrix R, an upper bound is obtained, using a result of Slepian (1...
Gespeichert in:
Veröffentlicht in: | Communications in statistics. Theory and methods 1976-01, Vol.5 (7), p.689-692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inequalities for tail probabilities of the multivariate normal distribution are obtained, as a generalization of those given by Feller (1966). Upper and lower bounds are given in the equi-correlated case. For an arbitrary correlation matrix R, an upper bound is obtained, using a result of Slepian (1962) which asserts that certain multivariate normal probabilities are a non-decreasing function of correlations. |
---|---|
ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610927608827386 |