Inequalities for tail probabilities for the multivariate normal distribution

Inequalities for tail probabilities of the multivariate normal distribution are obtained, as a generalization of those given by Feller (1966). Upper and lower bounds are given in the equi-correlated case. For an arbitrary correlation matrix R, an upper bound is obtained, using a result of Slepian (1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1976-01, Vol.5 (7), p.689-692
Hauptverfasser: Harkness, William L., Godambe, Ashok V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inequalities for tail probabilities of the multivariate normal distribution are obtained, as a generalization of those given by Feller (1966). Upper and lower bounds are given in the equi-correlated case. For an arbitrary correlation matrix R, an upper bound is obtained, using a result of Slepian (1962) which asserts that certain multivariate normal probabilities are a non-decreasing function of correlations.
ISSN:0361-0926
1532-415X
DOI:10.1080/03610927608827386