An efficient algorithm for computing covariance matrices from data with missing values

An algorithm for computing covariance and correlation matrices from data with missing values is presented. In terms of the number of operations performed (hence CPU time used) this algorithm is more efficient than that used by most statistical computing packages. CPU time efficiency is attained with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Simulation and computation 1982-01, Vol.11 (1), p.113-121
1. Verfasser: Engelman, Laszlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algorithm for computing covariance and correlation matrices from data with missing values is presented. In terms of the number of operations performed (hence CPU time used) this algorithm is more efficient than that used by most statistical computing packages. CPU time efficiency is attained without undue increase in the number of input/output operations or memory space requirements.
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918208812248