Hardy Inequality and Heat Semigroup Estimates for Riemannian Manifolds with Singular Data
Upper bounds are obtained for the heat content of an open set D in a geodesically complete Riemannian manifold M with Dirichlet boundary condition on ∂D, and non-negative initial condition. We show that these upper bounds are close to being sharp if (i) the Dirichlet-Laplace-Beltrami operator acting...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2012-05, Vol.37 (5), p.885-900 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Upper bounds are obtained for the heat content of an open set D in a geodesically complete Riemannian manifold M with Dirichlet boundary condition on ∂D, and non-negative initial condition. We show that these upper bounds are close to being sharp if (i) the Dirichlet-Laplace-Beltrami operator acting in L
2
(D) satisfies a strong Hardy inequality with weight δ
2
, (ii) the initial temperature distribution, and the specific heat of D are given by δ
−α
and δ
−β
respectively, where δ is the distance to ∂D, and 1 |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605302.2011.596879 |