Hardy Inequality and Heat Semigroup Estimates for Riemannian Manifolds with Singular Data

Upper bounds are obtained for the heat content of an open set D in a geodesically complete Riemannian manifold M with Dirichlet boundary condition on ∂D, and non-negative initial condition. We show that these upper bounds are close to being sharp if (i) the Dirichlet-Laplace-Beltrami operator acting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2012-05, Vol.37 (5), p.885-900
Hauptverfasser: van den Berg, M., Gilkey, P., Grigor'yan, A., Kirsten, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upper bounds are obtained for the heat content of an open set D in a geodesically complete Riemannian manifold M with Dirichlet boundary condition on ∂D, and non-negative initial condition. We show that these upper bounds are close to being sharp if (i) the Dirichlet-Laplace-Beltrami operator acting in L 2 (D) satisfies a strong Hardy inequality with weight δ 2 , (ii) the initial temperature distribution, and the specific heat of D are given by δ −α and δ −β respectively, where δ is the distance to ∂D, and 1 
ISSN:0360-5302
1532-4133
DOI:10.1080/03605302.2011.596879