Uniqueness Results for Mean Field Equations with Singular Data

We prove uniqueness of solutions for mean field equations [ 10 ] with singular data [ 5 ], arising in the analysis of two-dimensional turbulent Euler flows. In this way, we generalize to the singular case some uniqueness results obtained by Chang, Chen and the second author [ 11 ]. In particular, by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2009-07, Vol.34 (7), p.676-702
Hauptverfasser: Bartolucci, D., Lin, C. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove uniqueness of solutions for mean field equations [ 10 ] with singular data [ 5 ], arising in the analysis of two-dimensional turbulent Euler flows. In this way, we generalize to the singular case some uniqueness results obtained by Chang, Chen and the second author [ 11 ]. In particular, by using a sharp form of an improved Alexandrov-Bol's type isoperimetric inequality, we are able to exploit the role played by the singularities and then obtain uniqueness under weaker boundary regularity assumptions than those assumed in [ 11 ].
ISSN:0360-5302
1532-4133
DOI:10.1080/03605300902910089