Decomposably non-negative matrices

Let A be an mn- by - mn symmetric matrix. Partition A into m 2 n - by - n blocks and suppose that each of these blocks is also symmetric. Suppose that for every decomposable (rank one) tensor ν ⊗ w, we have (ν ⊗ w) t A(ν otimes; w) ≥ 0. Here, ν is a column m-tuple and w is a column n-tuple. We study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear & multilinear algebra 1996-07, Vol.41 (1), p.63-79
Hauptverfasser: Grone, Robert, Pierce, Stephen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be an mn- by - mn symmetric matrix. Partition A into m 2 n - by - n blocks and suppose that each of these blocks is also symmetric. Suppose that for every decomposable (rank one) tensor ν ⊗ w, we have (ν ⊗ w) t A(ν otimes; w) ≥ 0. Here, ν is a column m-tuple and w is a column n-tuple. We study the maximum number of negative eigenvalues such a matrix can have, as well as obtaining alternative characterizations of such matrices.
ISSN:0308-1087
1563-5139
DOI:10.1080/03081089608818462