Optimal multilevel matrix algebra operators

We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear & multilinear algebra 2000-10, Vol.48 (1), p.35-66
Hauptverfasser: Benedetto, Fabio di, Capizzano, Stefano serra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 35
container_title Linear & multilinear algebra
container_volume 48
creator Benedetto, Fabio di
Capizzano, Stefano serra
description We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.
doi_str_mv 10.1080/03081080008818658
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081080008818658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03081080008818658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</originalsourceid><addsrcrecordid>eNqFj09LAzEQxYMouFY_gLe9y2rSJJsseJGiVSj0oueQ5o-sZJtlErX99maptyKe3oN5v5l5CF0TfEuwxHeYYjkZjKUksuXyBFWEt7ThhHanqJrmTQmIc3SR0kfJMUJ5hW7WY-4HHerhM-Q-uC9XrM7Q72od3t0GdB1HBzpHSJfozOuQ3NWvztDb0-Pr4rlZrZcvi4dVYyhjubGM8o7OhbCScc0dE05wQox3FHvJ8dxj3xZtvaWWUNcZI5nZCNlpbT23dIbIYa-BmBI4r0YoP8JeEaymkuqobWHEgem3PsKgvyMEq7Lehwge9Nb06ZhSeZcLef8vSf8-_APm7GxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal multilevel matrix algebra operators</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Benedetto, Fabio di ; Capizzano, Stefano serra</creator><creatorcontrib>Benedetto, Fabio di ; Capizzano, Stefano serra</creatorcontrib><description>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081080008818658</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Korovkin theorem ; Masking operators ; Matrix vector spaces and matrix algebras ; Toeplitz matrices</subject><ispartof>Linear &amp; multilinear algebra, 2000-10, Vol.48 (1), p.35-66</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</citedby><cites>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03081080008818658$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03081080008818658$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Benedetto, Fabio di</creatorcontrib><creatorcontrib>Capizzano, Stefano serra</creatorcontrib><title>Optimal multilevel matrix algebra operators</title><title>Linear &amp; multilinear algebra</title><description>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</description><subject>Korovkin theorem</subject><subject>Masking operators</subject><subject>Matrix vector spaces and matrix algebras</subject><subject>Toeplitz matrices</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFj09LAzEQxYMouFY_gLe9y2rSJJsseJGiVSj0oueQ5o-sZJtlErX99maptyKe3oN5v5l5CF0TfEuwxHeYYjkZjKUksuXyBFWEt7ThhHanqJrmTQmIc3SR0kfJMUJ5hW7WY-4HHerhM-Q-uC9XrM7Q72od3t0GdB1HBzpHSJfozOuQ3NWvztDb0-Pr4rlZrZcvi4dVYyhjubGM8o7OhbCScc0dE05wQox3FHvJ8dxj3xZtvaWWUNcZI5nZCNlpbT23dIbIYa-BmBI4r0YoP8JeEaymkuqobWHEgem3PsKgvyMEq7Lehwge9Nb06ZhSeZcLef8vSf8-_APm7GxX</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Benedetto, Fabio di</creator><creator>Capizzano, Stefano serra</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001001</creationdate><title>Optimal multilevel matrix algebra operators</title><author>Benedetto, Fabio di ; Capizzano, Stefano serra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Korovkin theorem</topic><topic>Masking operators</topic><topic>Matrix vector spaces and matrix algebras</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetto, Fabio di</creatorcontrib><creatorcontrib>Capizzano, Stefano serra</creatorcontrib><collection>CrossRef</collection><jtitle>Linear &amp; multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetto, Fabio di</au><au>Capizzano, Stefano serra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multilevel matrix algebra operators</atitle><jtitle>Linear &amp; multilinear algebra</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>1</issue><spage>35</spage><epage>66</epage><pages>35-66</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/03081080008818658</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-1087
ispartof Linear & multilinear algebra, 2000-10, Vol.48 (1), p.35-66
issn 0308-1087
1563-5139
language eng
recordid cdi_crossref_primary_10_1080_03081080008818658
source Taylor & Francis:Master (3349 titles)
subjects Korovkin theorem
Masking operators
Matrix vector spaces and matrix algebras
Toeplitz matrices
title Optimal multilevel matrix algebra operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multilevel%20matrix%20algebra%20operators&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Benedetto,%20Fabio%20di&rft.date=2000-10-01&rft.volume=48&rft.issue=1&rft.spage=35&rft.epage=66&rft.pages=35-66&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081080008818658&rft_dat=%3Ccrossref_infor%3E10_1080_03081080008818658%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true