Optimal multilevel matrix algebra operators
We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of bl...
Gespeichert in:
Veröffentlicht in: | Linear & multilinear algebra 2000-10, Vol.48 (1), p.35-66 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Linear & multilinear algebra |
container_volume | 48 |
creator | Benedetto, Fabio di Capizzano, Stefano serra |
description | We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results. |
doi_str_mv | 10.1080/03081080008818658 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081080008818658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03081080008818658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</originalsourceid><addsrcrecordid>eNqFj09LAzEQxYMouFY_gLe9y2rSJJsseJGiVSj0oueQ5o-sZJtlErX99maptyKe3oN5v5l5CF0TfEuwxHeYYjkZjKUksuXyBFWEt7ThhHanqJrmTQmIc3SR0kfJMUJ5hW7WY-4HHerhM-Q-uC9XrM7Q72od3t0GdB1HBzpHSJfozOuQ3NWvztDb0-Pr4rlZrZcvi4dVYyhjubGM8o7OhbCScc0dE05wQox3FHvJ8dxj3xZtvaWWUNcZI5nZCNlpbT23dIbIYa-BmBI4r0YoP8JeEaymkuqobWHEgem3PsKgvyMEq7Lehwge9Nb06ZhSeZcLef8vSf8-_APm7GxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal multilevel matrix algebra operators</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Benedetto, Fabio di ; Capizzano, Stefano serra</creator><creatorcontrib>Benedetto, Fabio di ; Capizzano, Stefano serra</creatorcontrib><description>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081080008818658</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Korovkin theorem ; Masking operators ; Matrix vector spaces and matrix algebras ; Toeplitz matrices</subject><ispartof>Linear & multilinear algebra, 2000-10, Vol.48 (1), p.35-66</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</citedby><cites>FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03081080008818658$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03081080008818658$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Benedetto, Fabio di</creatorcontrib><creatorcontrib>Capizzano, Stefano serra</creatorcontrib><title>Optimal multilevel matrix algebra operators</title><title>Linear & multilinear algebra</title><description>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</description><subject>Korovkin theorem</subject><subject>Masking operators</subject><subject>Matrix vector spaces and matrix algebras</subject><subject>Toeplitz matrices</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFj09LAzEQxYMouFY_gLe9y2rSJJsseJGiVSj0oueQ5o-sZJtlErX99maptyKe3oN5v5l5CF0TfEuwxHeYYjkZjKUksuXyBFWEt7ThhHanqJrmTQmIc3SR0kfJMUJ5hW7WY-4HHerhM-Q-uC9XrM7Q72od3t0GdB1HBzpHSJfozOuQ3NWvztDb0-Pr4rlZrZcvi4dVYyhjubGM8o7OhbCScc0dE05wQox3FHvJ8dxj3xZtvaWWUNcZI5nZCNlpbT23dIbIYa-BmBI4r0YoP8JeEaymkuqobWHEgem3PsKgvyMEq7Lehwge9Nb06ZhSeZcLef8vSf8-_APm7GxX</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Benedetto, Fabio di</creator><creator>Capizzano, Stefano serra</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20001001</creationdate><title>Optimal multilevel matrix algebra operators</title><author>Benedetto, Fabio di ; Capizzano, Stefano serra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d43593277d845a5e47e7511cfe30f8502f0f68506fd3d13e9cc84cb789aadf5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Korovkin theorem</topic><topic>Masking operators</topic><topic>Matrix vector spaces and matrix algebras</topic><topic>Toeplitz matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetto, Fabio di</creatorcontrib><creatorcontrib>Capizzano, Stefano serra</creatorcontrib><collection>CrossRef</collection><jtitle>Linear & multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetto, Fabio di</au><au>Capizzano, Stefano serra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multilevel matrix algebra operators</atitle><jtitle>Linear & multilinear algebra</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>48</volume><issue>1</issue><spage>35</spage><epage>66</epage><pages>35-66</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/03081080008818658</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1087 |
ispartof | Linear & multilinear algebra, 2000-10, Vol.48 (1), p.35-66 |
issn | 0308-1087 1563-5139 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03081080008818658 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Korovkin theorem Masking operators Matrix vector spaces and matrix algebras Toeplitz matrices |
title | Optimal multilevel matrix algebra operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multilevel%20matrix%20algebra%20operators&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Benedetto,%20Fabio%20di&rft.date=2000-10-01&rft.volume=48&rft.issue=1&rft.spage=35&rft.epage=66&rft.pages=35-66&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081080008818658&rft_dat=%3Ccrossref_infor%3E10_1080_03081080008818658%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |