Optimal multilevel matrix algebra operators

We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear & multilinear algebra 2000-10, Vol.48 (1), p.35-66
Hauptverfasser: Benedetto, Fabio di, Capizzano, Stefano serra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the optimal Frobenius operator in a general matrix vector space and in particular in the multilevel trigonometric matrix vector spaces, by emphasizing both the algebraic and geometric properties. These general results are used to extend the Korovkin matrix theory for the approximation of block Toeplitz matrices via trigonometric vector spaces. The abstract theory is then applied to the analysis of the approximation properties of several sine and cosine based vector spaces. Few numerical experiments are performed to give evidence of the theoretical results.
ISSN:0308-1087
1563-5139
DOI:10.1080/03081080008818658