A medium manganese steel designed for water quenching and partitioning
An aluminium-containing medium manganese steel has been designed to undergo intercritical annealing followed by quenching in water and subsequent partitioning. Water quenching, replacing the quenching temperature (QT) between 150 and 300°C in conventional quenching and partitioning steels, is theref...
Gespeichert in:
Veröffentlicht in: | Materials science and technology 2018-07, Vol.34 (10), p.1168-1175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An aluminium-containing medium manganese steel has been designed to undergo intercritical annealing followed by quenching in water and subsequent partitioning. Water quenching, replacing the quenching temperature (QT) between 150 and 300°C in conventional quenching and partitioning steels, is therefore adopted in QP alloys, in order to guarantee the precise QT in practice. The low intercritical annealing temperature of 750°C refines both ferrite and prior austenite grains into submicron size. The large fraction of ultra-fine ferrite, as well as the transformation-induced plasticity effect of retained austenite, improves the overall ductility of this water-quenched and partitioned steel. The alloy has achieved excellent mechanical properties of 1130 MPa ultimate tensile strength combined with 19.2% total elongation. |
---|---|
ISSN: | 0267-0836 1743-2847 |
DOI: | 10.1080/02670836.2018.1426678 |