Solving unobserved heterogeneity with latent class inflated Poisson regression model

Inflated data and over-dispersion are two common problems when modeling count data with traditional Poisson regression models. In this study, we propose a latent class inflated Poisson (LCIP) regression model to solve the unobserved heterogeneity that leads to inflations and over-dispersion. The per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2022-08, Vol.49 (11), p.2953-2963
Hauptverfasser: Lin, Ting Hsiang, Tsai, Min-Hsiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inflated data and over-dispersion are two common problems when modeling count data with traditional Poisson regression models. In this study, we propose a latent class inflated Poisson (LCIP) regression model to solve the unobserved heterogeneity that leads to inflations and over-dispersion. The performance of the model estimation is evaluated through simulation studies. We illustrate the usefulness of introducing a latent class variable by analyzing the Behavioral Risk Factor Surveillance System (BRFSS) data, which contain several excessive values and characterized by over-dispersion. As a result, the new model we proposed displays a better fit than the standard Poisson regression and zero-inflated Poisson regression models for the inflated counts.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2021.1929875