Solving unobserved heterogeneity with latent class inflated Poisson regression model
Inflated data and over-dispersion are two common problems when modeling count data with traditional Poisson regression models. In this study, we propose a latent class inflated Poisson (LCIP) regression model to solve the unobserved heterogeneity that leads to inflations and over-dispersion. The per...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2022-08, Vol.49 (11), p.2953-2963 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inflated data and over-dispersion are two common problems when modeling count data with traditional Poisson regression models. In this study, we propose a latent class inflated Poisson (LCIP) regression model to solve the unobserved heterogeneity that leads to inflations and over-dispersion. The performance of the model estimation is evaluated through simulation studies. We illustrate the usefulness of introducing a latent class variable by analyzing the Behavioral Risk Factor Surveillance System (BRFSS) data, which contain several excessive values and characterized by over-dispersion. As a result, the new model we proposed displays a better fit than the standard Poisson regression and zero-inflated Poisson regression models for the inflated counts. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2021.1929875 |