On maximum depth classifiers: depth distribution approach

In this paper, we consider the notions of data depth for ordering multivariate data and propose a classification rule based on the distribution of some depth functions in . The equivalence of the proposed classification rule to optimal Bayes rule is discussed under suitable conditions. The performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2018-04, Vol.45 (6), p.1106-1117
Hauptverfasser: Makinde, Olusola Samuel, Fasoranbaku, Olusoga Akin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the notions of data depth for ordering multivariate data and propose a classification rule based on the distribution of some depth functions in . The equivalence of the proposed classification rule to optimal Bayes rule is discussed under suitable conditions. The performance of the proposed classification method is investigated in low- and high-dimensional setting using real datasets. Also, the performance of the proposed classification method is illustrated in comparison to some other depth-based classifiers using simulated data sets.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2017.1342783