Nonparametric estimation of mean residual quantile function under right censoring

In this paper, we develop non-parametric estimation of the mean residual quantile function based on right-censored data. Two non-parametric estimators, one based on the empirical quantile function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the estimators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2017-07, Vol.44 (10), p.1856-1874
Hauptverfasser: Sankaran, P.G., Midhu, N.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop non-parametric estimation of the mean residual quantile function based on right-censored data. Two non-parametric estimators, one based on the empirical quantile function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the estimators are discussed. Monte Carlo simulation studies are conducted to compare the two estimators. The method is illustrated with the aid of two real data sets.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2016.1238046