Comparative analysis of classification methods in determining non-active student characteristics in Indonesia Open University
Classification is a data mining technique that aims to discover a model from training data that distinguishes records into appropriate classes. Classification methods can be applied in education, to classify non-active students in higher education programs based on their characteristics. This paper...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2016-01, Vol.43 (1), p.87-97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classification is a data mining technique that aims to discover a model from training data that distinguishes records into appropriate classes. Classification methods can be applied in education, to classify non-active students in higher education programs based on their characteristics. This paper presents a comparison of three classification methods: Naïve Bayes, Bagging, and C4.5. The criteria used to evaluate performance of three classifiers are stratified cross-validation, confusion matrix, ROC curve, recall, precision, and F-measure. The data used for this paper are non-active students in Indonesia Open University (IOU) for the period of 2004-2012. The non-active students were divided into three groups: non-active students in the first three years, non-active students in first five years, and non-active students over five years. Results of the study show that the Bagging method provided a higher accuracy than Naïve Bayes and C4.5. The accuracy of bagging classification is 82.99%, while the Naïve Bayes and C4.5 are 80.04% and 82.74%, respectively. The classification tree resulted from the Bagging method has a large number of nodes, so it is quite difficult to use in decision-making. For that, the C4.5 tree is used to classify non-active students in IOU based in their characteristics. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2015.1077940 |