Robust confidence intervals for trend estimation in meta-analysis with publication bias
Confidence interval (CI) is very useful for trend estimation in meta-analysis. It provides a type of interval estimate of the regression slope as well as an indicator of the reliability of the estimate. Thus a precise calculation of confidence interval at an expected level is important. It is always...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2015-12, Vol.42 (12), p.2715-2733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Confidence interval (CI) is very useful for trend estimation in meta-analysis. It provides a type of interval estimate of the regression slope as well as an indicator of the reliability of the estimate. Thus a precise calculation of confidence interval at an expected level is important. It is always difficult to explicitly quantify the CIs when there is publication bias in meta-analysis. Various CIs have been proposed, including the most widely used DerSimonian-Laird CI and the recently proposed Henmi-Copas CI. The latter provides a robust solution when there are non-ignorable missing data due to publication bias. In this paper we extended the idea into meta-analysis for trend estimation. We applied the method in different scenarios and showed that this type of CI is more robust than the others. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2015.1048672 |